A deep auto-encoder model for gene expression prediction

被引:71
|
作者
Xie, Rui [1 ]
Wen, Jia [2 ]
Quitadamo, Andrew [2 ]
Cheng, Jianlin [1 ]
Shi, Xinghua [2 ]
机构
[1] Univ Missouri, Dept Comp Sci, Columbia, MO USA
[2] Univ N Carolina, Coll Comp & Informat, Dept Bioinformat & Genom, Univ City Blvd, Charlotte, NC 28223 USA
来源
BMC GENOMICS | 2017年 / 18卷
基金
美国国家科学基金会;
关键词
Predictive model; Stacked denoising auto-encoder; Multilayer perceptron; Deep learning; Gene expression; QUANTITATIVE TRAIT LOCI; RESIDUE CONTACTS; GENOME; TRANSCRIPTOME; NETWORKS; ARCHITECTURES; NUCLEOTIDE; SEQUENCE; MAP;
D O I
10.1186/s12864-017-4226-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. Results: To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. Conclusion: We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A deep auto-encoder model for gene expression prediction
    Rui Xie
    Jia Wen
    Andrew Quitadamo
    Jianlin Cheng
    Xinghua Shi
    BMC Genomics, 18
  • [2] Deep auto-encoder based clustering
    Song, Chunfeng
    Huang, Yongzhen
    Liu, Feng
    Wang, Zhenyu
    Wang, Liang
    INTELLIGENT DATA ANALYSIS, 2014, 18 : S65 - S76
  • [3] A Deep Learning Method Based on Hybrid Auto-Encoder Model
    Yang, ZhenYu
    Jing, Hui
    PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 1100 - 1104
  • [4] An Air Pollutant Prediction Model Based on Auto-Encoder Network
    Qin D.
    Ding Z.
    Jin Y.
    Zhao Q.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (05): : 681 - 687
  • [5] Stacked sparse auto-encoder for deep clustering
    Cai, Jinyu
    Wang, Shiping
    Guo, Wenzhong
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 1532 - 1538
  • [6] A DEEP CONVOLUTIONAL AUTO-ENCODER WITH EMBEDDED CLUSTERING
    Alqahtani, A.
    Xie, X.
    Deng, J.
    Jones, M. W.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 4058 - 4062
  • [7] Deep variational auto-encoder for text classification
    Xie, Lin
    Liu, Genggeng
    Lian, Hongfei
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER PHYSICAL SYSTEMS (ICPS 2019), 2019, : 737 - 742
  • [8] Online deep learning based on auto-encoder
    Zhang, Si-si
    Liu, Jian-wei
    Zuo, Xin
    Lu, Run-kun
    Lian, Si-ming
    APPLIED INTELLIGENCE, 2021, 51 (08) : 5420 - 5439
  • [9] Deep clustering based on embedded auto-encoder
    Huang, Xuan
    Hu, Zhenlong
    Lin, Lin
    SOFT COMPUTING, 2023, 27 (02) : 1075 - 1090
  • [10] Creation of a Deep Convolutional Auto-Encoder in Caffe
    Turchenko, Volodymyr
    Luczak, Artur
    PROCEEDINGS OF THE 2017 9TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS), VOL 2, 2017, : 651 - 659