Variational principles for advection-diffusion problems

被引:1
|
作者
Auchmuty, Giles [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
Advection-diffusion equations; Mixed boundary conditions; Variational principles; BOUNDARY-VALUE-PROBLEMS; EIGENPROBLEMS;
D O I
10.1016/j.camwa.2017.09.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational principles for linear and semilinear advection-diffusion problems with velocity field given by potential flow are described and analyzed. Mixed Dirichlet and prescribed flux conditions are treated. Existence and uniqueness results are proved and equivalent integral operator equations are found. A positive multiplier function related to the potential of the flow is used to change the system to divergence form. The dependence of the solution on inhomogeneous flux boundary data is determined. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1882 / 1886
页数:5
相关论文
共 50 条
  • [41] A variational splitting of high-order linear multistep methods for heat transfer and advection-diffusion parabolic problems
    Behnoudfar, Pouria
    Calo, Victor Manuel
    Los, Marcin
    Maczuga, Pawel
    Paszynski, Maciej
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
  • [42] New complex variable meshless method for advection-diffusion problems
    Wang Jian-Fei
    Cheng Yu-Min
    CHINESE PHYSICS B, 2013, 22 (03)
  • [43] FETI domain decomposition methods for scalar advection-diffusion problems
    Toselli, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (43-44) : 5759 - 5776
  • [44] Stabilized FEM with shock-capturing for advection-diffusion problems
    Knopp, T
    Lube, G
    Rapin, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S767 - S768
  • [45] Application of nonconforming finite elements to solving advection-diffusion problems
    Kuzin V.I.
    Kravtchenko V.V.
    Numerical Analysis and Applications, 2010, 3 (01) : 39 - 51
  • [46] New complex variable meshless method for advection-diffusion problems
    王健菲
    程玉民
    Chinese Physics B, 2013, 22 (03) : 96 - 102
  • [47] Isogeometric analysis in advection-diffusion problems: Tension splines approximation
    Manni, Carla
    Pelosi, Francesca
    Sampoli, M. Lucia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) : 511 - 528
  • [48] One-dimensional surrogate models for advection-diffusion problems
    Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano
    I-20133, Italy
    不详
    I-20133, Italy
    不详
    GA
    30322, United States
    Lect. Notes Comput. Sci. Eng., (447-455):
  • [49] A Hybridizable Discontinuous Galerkin Method for Magnetic Advection-Diffusion Problems
    Wang, Jindong
    Wu, Shuonan
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [50] Advection-diffusion in Lagrangian coordinates
    Thiffeault, JL
    PHYSICS LETTERS A, 2003, 309 (5-6) : 415 - 422