Variational principles for advection-diffusion problems

被引:1
|
作者
Auchmuty, Giles [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
Advection-diffusion equations; Mixed boundary conditions; Variational principles; BOUNDARY-VALUE-PROBLEMS; EIGENPROBLEMS;
D O I
10.1016/j.camwa.2017.09.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational principles for linear and semilinear advection-diffusion problems with velocity field given by potential flow are described and analyzed. Mixed Dirichlet and prescribed flux conditions are treated. Existence and uniqueness results are proved and equivalent integral operator equations are found. A positive multiplier function related to the potential of the flow is used to change the system to divergence form. The dependence of the solution on inhomogeneous flux boundary data is determined. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1882 / 1886
页数:5
相关论文
共 50 条
  • [31] A Note on Homogenization of Advection-Diffusion Problems with Large Expected Drift
    Henning, Patrick
    Ohlberger, Mario
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2011, 30 (03): : 319 - 339
  • [32] Energy stable flux reconstruction schemes for advection-diffusion problems
    Castonguay, P.
    Williams, D. M.
    Vincent, P. E.
    Jameson, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 267 : 400 - 417
  • [33] Mortar Methods with Optimized Transmission Conditions for Advection-Diffusion Problems
    Japhet, Caroline
    Maday, Yvon
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 541 - 549
  • [34] Numerical Inverse Laplace Transform Methods for Advection-Diffusion Problems
    Kamran, Farman Ali
    Shah, Farman Ali
    Aly, Wael Hosny Fouad
    Aksoy, Hasan M.
    Alotaibi, Fahad
    Mahariq, Ibrahim
    SYMMETRY-BASEL, 2022, 14 (12):
  • [35] Detailed CVFEM Algorithm for Three Dimensional Advection-diffusion Problems
    Tombarevic, E.
    Voller, V. R.
    Vusanovic, I.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 96 (01): : 1 - 29
  • [36] Numerical experiments for advection-diffusion problems in a channel with a 180° bend
    Clavero, C
    Miller, JJH
    O'Riordan, E
    Shishkin, GI
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 118 (2-3) : 223 - 246
  • [37] Basis of splines associated with singularly perturbed advection-diffusion problems
    Bosner, Tina
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (01) : 1 - 12
  • [38] On the Numerical Solution of Advection-Diffusion Problems with Singular Source Terms
    Soykan, Ezgi
    Ahlatcioglu, Mehmet
    Ashyraliyev, Maksat
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018), 2018, 1997
  • [39] APPLICATION OF AN OPERATOR-SPLITTING ALGORITHM FOR ADVECTION-DIFFUSION PROBLEMS
    MURALIDHAR, K
    VERGHESE, M
    PILLAI, KM
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1993, 23 (01) : 99 - 113
  • [40] A BALANCING DOMAIN DECOMPOSITION METHOD BY CONSTRAINTS FOR ADVECTION-DIFFUSION PROBLEMS
    Tu, Xuemin
    Li, Jing
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2008, 3 (01) : 25 - 60