Variational principles for advection-diffusion problems

被引:1
|
作者
Auchmuty, Giles [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
Advection-diffusion equations; Mixed boundary conditions; Variational principles; BOUNDARY-VALUE-PROBLEMS; EIGENPROBLEMS;
D O I
10.1016/j.camwa.2017.09.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational principles for linear and semilinear advection-diffusion problems with velocity field given by potential flow are described and analyzed. Mixed Dirichlet and prescribed flux conditions are treated. Existence and uniqueness results are proved and equivalent integral operator equations are found. A positive multiplier function related to the potential of the flow is used to change the system to divergence form. The dependence of the solution on inhomogeneous flux boundary data is determined. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1882 / 1886
页数:5
相关论文
共 50 条
  • [21] A multigrid preconditioner for stabilised discretisations of advection-diffusion problems
    Ramage, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 110 (01) : 187 - 203
  • [22] Acceleration of a domain decomposition method for advection-diffusion problems
    Lube, G
    Knopp, T
    Rapin, G
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 267 - 274
  • [23] A Python']Python Framework for Solving Advection-Diffusion Problems
    Dedner, Andreas
    Klofkorn, Robert
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 695 - 703
  • [24] Solution of the linear and nonlinear advection-diffusion problems on a sphere
    Skiba, Yuri N.
    Cruz-Rodriguez, Roberto C.
    Filatov, Denis M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1922 - 1937
  • [25] BDDC algorithms for advection-diffusion problems with HDG discretizations
    Tu, Xuemin
    Zhang, Jinjin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 101 : 74 - 106
  • [26] A hybrid nonoverlapping domain decomposition scheme for advection dominated advection-diffusion problems
    Espedal, MS
    Tai, XC
    Yan, NN
    NUMERICAL ALGORITHMS, 1998, 18 (3-4) : 321 - 336
  • [27] Variational quantum solutions to the advection-diffusion equation for applications in fluid dynamics
    Demirdjian, Reuben
    Gunlycke, Daniel
    Reynolds, Carolyn A.
    Doyle, James D.
    Tafur, Sergio
    QUANTUM INFORMATION PROCESSING, 2022, 21 (09)
  • [28] SPECTRAL APPROXIMATION TO ADVECTION-DIFFUSION PROBLEMS BY THE FICTITIOUS INTERFACE METHOD
    FRATI, A
    PASQUARELLI, F
    QUARTERONI, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (02) : 201 - 212
  • [29] Detailed CVFEM algorithm for three dimensional advection-diffusion problems
    Tombarević, E.
    Voller, V.R.
    Vusanović, I.
    CMES - Computer Modeling in Engineering and Sciences, 2013, 96 (01): : 1 - 29
  • [30] FV Upwind Stabilization of FE Discretizations for Advection-Diffusion Problems
    Brunner, Fabian
    Frank, Florian
    Knabner, Peter
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 177 - 185