Basin of attraction of a cusp-fold singularity in 3D piecewise smooth vector fields

被引:9
|
作者
de Carvalho, Tiago [1 ]
Teixeira, Marco Antonio [2 ]
机构
[1] FC UNESP, BR-17033360 Sao Paulo, Brazil
[2] IMECC UNICAMP, BR-13081970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector field; Bifurcation; Cusp-fold singularity; Structural stability; Basin of attraction; BIFURCATIONS;
D O I
10.1016/j.jmaa.2014.03.093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generic one-parameter families of piecewise smooth vector fields on R-3 presenting the so-called cusp-fold singularity are studied. The bifurcation diagrams are exhibited and the asymptotic and structural stabilities are discussed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 30
页数:20
相关论文
共 50 条
  • [1] Attractivity, Degeneracy and Codimension of a Typical Singularity in 3D Piecewise Smooth Vector Fields
    Tiago Carvalho
    Marco Antonio Teixeira
    Milan Journal of Mathematics, 2019, 87 : 233 - 248
  • [2] Attractivity, Degeneracy and Codimension of a Typical Singularity in 3D Piecewise Smooth Vector Fields
    Carvalho, Tiago
    Teixeira, Marco Antonio
    MILAN JOURNAL OF MATHEMATICS, 2019, 87 (02) : 233 - 248
  • [3] Asymptotic stability and bifurcations of 3D piecewise smooth vector fields
    Tiago Carvalho
    Marco Antônio Teixeira
    Durval José Tonon
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [4] Asymptotic stability and bifurcations of 3D piecewise smooth vector fields
    Carvalho, Tiago
    Teixeira, Marco Antonio
    Tonon, Durval Jose
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [5] Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields
    Buzzi, Claudio A.
    Euzebio, Rodrigo D.
    Mereu, Ana C.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)
  • [6] BIRTH OF AN ARBITRARY NUMBER OF T-SINGULARITIES IN 3D PIECEWISE SMOOTH VECTOR FIELDS
    de Carvalho, Tiago
    Freitas, Bruno
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 4851 - 4861
  • [7] Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields
    Claudio A. Buzzi
    Rodrigo D. Euzébio
    Ana C. Mereu
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [8] Integrable 2D and 3D piecewise smooth vector fields with chaotic behavior and preserving energy or not
    Carvalho, Tiago
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 463
  • [9] Birth of Isolated Nested Cylinders and Limit Cycles in 3D Piecewise Smooth Vector Fields with Symmetry
    Carvalho, Tiago
    de Freitas, Bruno Rodrigues
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (07):
  • [10] Nearly Recurrent Components in 3D Piecewise Constant Vector Fields
    Szymczak, Andrzej
    Brunhart-Lupo, Nicholas
    COMPUTER GRAPHICS FORUM, 2012, 31 (03) : 1115 - 1124