Basin of attraction of a cusp-fold singularity in 3D piecewise smooth vector fields

被引:9
|
作者
de Carvalho, Tiago [1 ]
Teixeira, Marco Antonio [2 ]
机构
[1] FC UNESP, BR-17033360 Sao Paulo, Brazil
[2] IMECC UNICAMP, BR-13081970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector field; Bifurcation; Cusp-fold singularity; Structural stability; Basin of attraction; BIFURCATIONS;
D O I
10.1016/j.jmaa.2014.03.093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generic one-parameter families of piecewise smooth vector fields on R-3 presenting the so-called cusp-fold singularity are studied. The bifurcation diagrams are exhibited and the asymptotic and structural stabilities are discussed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 30
页数:20
相关论文
共 50 条
  • [21] Resolution of the Piecewise Smooth Visible-Invisible Two-Fold Singularity in R3 Using Regularization and Blowup
    Kristiansen, K. Uldall
    Hogan, S. J.
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) : 723 - 787
  • [22] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Yinghui GAO
    Xiangying MENG
    Qishao LU
    Applied Mathematics and Mechanics(English Edition), 2016, 37 (09) : 1239 - 1250
  • [23] Local and global bifurcations in 3D piecewise smooth discontinuous maps
    Patra, Mahashweta
    Gupta, Sayan
    Banerjee, Soumitro
    CHAOS, 2021, 31 (01)
  • [24] An Illustrative Visualization Framework for 3D Vector Fields
    Chen, Cheng-Kai
    Yan, Shi
    Yu, Hongfeng
    Max, Nelson
    Ma, Kwan-Liu
    COMPUTER GRAPHICS FORUM, 2011, 30 (07) : 1941 - 1951
  • [25] The method of multipole fields for 3D vector tomography
    Balandin, A. L.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 203 - 218
  • [26] The Application of Lagrangian Descriptors to 3D Vector Fields
    Garcia-Garrido, Victor J.
    Curbelo, Jezabel
    Mancho, Ana M.
    Wiggins, Stephen
    Mechoso, Carlos R.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (05): : 551 - 568
  • [27] Visualization of unstructured 3D vector fields with streamlines
    Liu, ZP
    Dong, SH
    Wang, GP
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 1112 - 1117
  • [28] Projectable Lie algebras of vector fields in 3D
    Schneider, Eivind
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 222 - 229
  • [29] The method of multipole fields for 3D vector tomography
    A. L. Balandin
    Computational and Applied Mathematics, 2016, 35 : 203 - 218
  • [30] The Application of Lagrangian Descriptors to 3D Vector Fields
    Víctor J. García-Garrido
    Jezabel Curbelo
    Ana M. Mancho
    Stephen Wiggins
    Carlos R. Mechoso
    Regular and Chaotic Dynamics, 2018, 23 : 551 - 568