Basin of attraction of a cusp-fold singularity in 3D piecewise smooth vector fields

被引:9
|
作者
de Carvalho, Tiago [1 ]
Teixeira, Marco Antonio [2 ]
机构
[1] FC UNESP, BR-17033360 Sao Paulo, Brazil
[2] IMECC UNICAMP, BR-13081970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector field; Bifurcation; Cusp-fold singularity; Structural stability; Basin of attraction; BIFURCATIONS;
D O I
10.1016/j.jmaa.2014.03.093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generic one-parameter families of piecewise smooth vector fields on R-3 presenting the so-called cusp-fold singularity are studied. The bifurcation diagrams are exhibited and the asymptotic and structural stabilities are discussed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 30
页数:20
相关论文
共 50 条
  • [11] Piecewise smooth vector fields in R3 at infinity
    Pessoa, Claudio
    Tonon, Duval J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 841 - 855
  • [12] On 3-Parameter Families of Piecewise Smooth Vector Fields in the Plane
    Buzzi, Claudio A.
    de Carvalho, Tiago
    Teixeira, Marco A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1402 - 1424
  • [13] Birth of limit cycles from a 3D triangular center of a piecewise smooth vector field
    Carvalho, Tiago
    Euzebio, Rodrigo D.
    Teixeira, Marco Antonto
    Tonon, Durval Jose
    IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (03) : 561 - 578
  • [14] Fold bifurcation of T-singularities and invariant manifolds in 3D piecewise-smooth dynamical systems
    Cristiano, Rony
    Pagano, Daniel J.
    Tonon, Durval J.
    Carvalho, Tiago
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 403
  • [15] Structural stability and normal forms of piecewise smooth vector fields on R3
    De Carvalho, Tiago
    Tonon, Durval Jose
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4): : 255 - 274
  • [16] Meshing 3D domains bounded by piecewise smooth surfaces
    Rineau, Laurent
    Yvinec, Mariette
    PROCEEDINGS OF THE 16TH INTERNATIONAL MESHING ROUNDTABLE, 2008, : 443 - +
  • [17] Uncertain Topology of 3D Vector Fields
    Otto, Mathias
    Germer, Tobias
    Theisel, Holger
    IEEE PACIFIC VISUALIZATION SYMPOSIUM 2011, 2011, : 67 - 74
  • [18] Hidden singularities in 3D vector fields
    Pang, Xiaoyan
    Feng, Chen
    Nyamdorj, Bujinlkham
    Zhao, Xinying
    JOURNAL OF OPTICS, 2020, 22 (11)
  • [19] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Gao, Yinghui
    Meng, Xiangying
    Lu, Qishao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (09) : 1239 - 1250
  • [20] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Yinghui Gao
    Xiangying Meng
    Qishao Lu
    Applied Mathematics and Mechanics, 2016, 37 : 1239 - 1250