Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields

被引:1
|
作者
Buzzi, Claudio A. [1 ]
Euzebio, Rodrigo D. [2 ]
Mereu, Ana C. [3 ]
机构
[1] UNESP IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] IME UFG, Dept Matemat, R Jacaranda,Campus Samambaia, BR-74001970 Goiania, Go, Brazil
[3] Univ Fed Sao Carlos, Dept Fis Quim & Matemat, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Invariant manifolds; Piecewise smooth differential systems; Periodic orbits; Averaging theory; LIMIT-CYCLES;
D O I
10.1007/s12346-023-00853-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to study the existence of two dimensional piecewise smooth invariant manifolds under small piecewise smooth perturbations from 3D center-type vector fields. The obtained piecewise smooth manifolds, filled up by periodic orbits, are rotations of some planar algebraic curves.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields
    Claudio A. Buzzi
    Rodrigo D. Euzébio
    Ana C. Mereu
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [2] Asymptotic stability and bifurcations of 3D piecewise smooth vector fields
    Tiago Carvalho
    Marco Antônio Teixeira
    Durval José Tonon
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [3] Asymptotic stability and bifurcations of 3D piecewise smooth vector fields
    Carvalho, Tiago
    Teixeira, Marco Antonio
    Tonon, Durval Jose
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02):
  • [4] Birth of limit cycles from a 3D triangular center of a piecewise smooth vector field
    Carvalho, Tiago
    Euzebio, Rodrigo D.
    Teixeira, Marco Antonto
    Tonon, Durval Jose
    IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (03) : 561 - 578
  • [5] Attractivity, Degeneracy and Codimension of a Typical Singularity in 3D Piecewise Smooth Vector Fields
    Carvalho, Tiago
    Teixeira, Marco Antonio
    MILAN JOURNAL OF MATHEMATICS, 2019, 87 (02) : 233 - 248
  • [6] Attractivity, Degeneracy and Codimension of a Typical Singularity in 3D Piecewise Smooth Vector Fields
    Tiago Carvalho
    Marco Antonio Teixeira
    Milan Journal of Mathematics, 2019, 87 : 233 - 248
  • [7] Fold bifurcation of T-singularities and invariant manifolds in 3D piecewise-smooth dynamical systems
    Cristiano, Rony
    Pagano, Daniel J.
    Tonon, Durval J.
    Carvalho, Tiago
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 403
  • [8] BIRTH OF AN ARBITRARY NUMBER OF T-SINGULARITIES IN 3D PIECEWISE SMOOTH VECTOR FIELDS
    de Carvalho, Tiago
    Freitas, Bruno
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 4851 - 4861
  • [9] Basin of attraction of a cusp-fold singularity in 3D piecewise smooth vector fields
    de Carvalho, Tiago
    Teixeira, Marco Antonio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 11 - 30
  • [10] Integrable 2D and 3D piecewise smooth vector fields with chaotic behavior and preserving energy or not
    Carvalho, Tiago
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 463