Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields

被引:1
|
作者
Buzzi, Claudio A. [1 ]
Euzebio, Rodrigo D. [2 ]
Mereu, Ana C. [3 ]
机构
[1] UNESP IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] IME UFG, Dept Matemat, R Jacaranda,Campus Samambaia, BR-74001970 Goiania, Go, Brazil
[3] Univ Fed Sao Carlos, Dept Fis Quim & Matemat, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Invariant manifolds; Piecewise smooth differential systems; Periodic orbits; Averaging theory; LIMIT-CYCLES;
D O I
10.1007/s12346-023-00853-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to study the existence of two dimensional piecewise smooth invariant manifolds under small piecewise smooth perturbations from 3D center-type vector fields. The obtained piecewise smooth manifolds, filled up by periodic orbits, are rotations of some planar algebraic curves.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Bifurcations from a center at infinity in 3D piecewise linear systems with two zones
    Freire, Emilio
    Ordonez, Manuel
    Ponce, Enrique
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 402
  • [32] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Gao, Yinghui
    Meng, Xiangying
    Lu, Qishao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (09) : 1239 - 1250
  • [33] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Yinghui Gao
    Xiangying Meng
    Qishao Lu
    Applied Mathematics and Mechanics, 2016, 37 : 1239 - 1250
  • [34] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Yinghui GAO
    Xiangying MENG
    Qishao LU
    Applied Mathematics and Mechanics(English Edition), 2016, 37 (09) : 1239 - 1250
  • [35] Local and global bifurcations in 3D piecewise smooth discontinuous maps
    Patra, Mahashweta
    Gupta, Sayan
    Banerjee, Soumitro
    CHAOS, 2021, 31 (01)
  • [36] An Illustrative Visualization Framework for 3D Vector Fields
    Chen, Cheng-Kai
    Yan, Shi
    Yu, Hongfeng
    Max, Nelson
    Ma, Kwan-Liu
    COMPUTER GRAPHICS FORUM, 2011, 30 (07) : 1941 - 1951
  • [37] The method of multipole fields for 3D vector tomography
    Balandin, A. L.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 203 - 218
  • [38] The Application of Lagrangian Descriptors to 3D Vector Fields
    Garcia-Garrido, Victor J.
    Curbelo, Jezabel
    Mancho, Ana M.
    Wiggins, Stephen
    Mechoso, Carlos R.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (05): : 551 - 568
  • [39] Visualization of unstructured 3D vector fields with streamlines
    Liu, ZP
    Dong, SH
    Wang, GP
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 1112 - 1117
  • [40] Projectable Lie algebras of vector fields in 3D
    Schneider, Eivind
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 222 - 229