Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields

被引:1
|
作者
Buzzi, Claudio A. [1 ]
Euzebio, Rodrigo D. [2 ]
Mereu, Ana C. [3 ]
机构
[1] UNESP IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] IME UFG, Dept Matemat, R Jacaranda,Campus Samambaia, BR-74001970 Goiania, Go, Brazil
[3] Univ Fed Sao Carlos, Dept Fis Quim & Matemat, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Invariant manifolds; Piecewise smooth differential systems; Periodic orbits; Averaging theory; LIMIT-CYCLES;
D O I
10.1007/s12346-023-00853-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to study the existence of two dimensional piecewise smooth invariant manifolds under small piecewise smooth perturbations from 3D center-type vector fields. The obtained piecewise smooth manifolds, filled up by periodic orbits, are rotations of some planar algebraic curves.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Smooth 3D manifolds based on thin plates
    Grachev, V. A.
    Neustadt, Y. S.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (03) : 477 - 490
  • [22] Structural stability and normal forms of piecewise smooth vector fields on R3
    De Carvalho, Tiago
    Tonon, Durval Jose
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4): : 255 - 274
  • [23] Meshing 3D domains bounded by piecewise smooth surfaces
    Rineau, Laurent
    Yvinec, Mariette
    PROCEEDINGS OF THE 16TH INTERNATIONAL MESHING ROUNDTABLE, 2008, : 443 - +
  • [24] Uncertain Topology of 3D Vector Fields
    Otto, Mathias
    Germer, Tobias
    Theisel, Holger
    IEEE PACIFIC VISUALIZATION SYMPOSIUM 2011, 2011, : 67 - 74
  • [25] Hidden singularities in 3D vector fields
    Pang, Xiaoyan
    Feng, Chen
    Nyamdorj, Bujinlkham
    Zhao, Xinying
    JOURNAL OF OPTICS, 2020, 22 (11)
  • [26] Slow-Fast Normal Forms Arising from Piecewise Smooth Vector Fields
    Perez, Otavio Henrique
    Rondon, Gabriel
    da Silva, Paulo Ricardo
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1709 - 1726
  • [27] Slow-Fast Normal Forms Arising from Piecewise Smooth Vector Fields
    Otavio Henrique Perez
    Gabriel Rondón
    Paulo Ricardo da Silva
    Journal of Dynamical and Control Systems, 2023, 29 : 1709 - 1726
  • [28] Bifurcation of Limit Cycles from the Center of a Family of Cubic Polynomial Vector Fields
    Sui, Shiyou
    Zhao, Liqin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05):
  • [29] PRESENTATIONS OF 3-MANIFOLDS ARISING FROM VECTOR FIELDS
    PERCELL, P
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 221 (02) : 361 - 377
  • [30] Bifurcation of Limit Cycles for a Kind of Piecewise Smooth Differential Systems with an Elementary Center of Focus-Focus Type
    Si, Zheng
    Zhao, Liqin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (SUPPL 1)