Slow-Fast Normal Forms Arising from Piecewise Smooth Vector Fields

被引:1
|
作者
Perez, Otavio Henrique [1 ]
Rondon, Gabriel [2 ]
da Silva, Paulo Ricardo [2 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Inst Biosci Humanities & Exact Sci, Rua C Colombo 2265, BR-15054000 S J Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Geometric singular perturbation theory; Regularization of piecewise smooth vector fields; Transition function; SINGULAR PERTURBATION-THEORY; HIDDEN DYNAMICS;
D O I
10.1007/s10883-023-09657-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study planar piecewise smooth differential systems of the form [GRAPHICS] . where F : R-2 -> R is a smooth map having 0 as a regular value. We consider linear regularizations Z(epsilon)(phi) of Z by replacing sgn(F) by phi(F/epsilon) in the last equation, with epsilon > 0 small and phi being a transition function (not necessarily monotonic). Nonlinear regularizations of the vector field Z whose transition function is monotonic are considered too. It is a wellknown fact that the regularized system is a slow-fast system. In this paper, we study typical singularities of slow-fast systems that arise from (linear or nonlinear) regularizations, namely, fold, transcritical and pitchfork singularities. Furthermore, the dependence of the slow-fast system on the graphical properties of the transition function is investigated.
引用
收藏
页码:1709 / 1726
页数:18
相关论文
共 50 条
  • [1] Slow-Fast Normal Forms Arising from Piecewise Smooth Vector Fields
    Otavio Henrique Perez
    Gabriel Rondón
    Paulo Ricardo da Silva
    Journal of Dynamical and Control Systems, 2023, 29 : 1709 - 1726
  • [2] Piecewise-Smooth Slow-Fast Systems
    da Silva, Paulo R.
    de Moraes, Jaime R.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2021, 27 (01) : 67 - 85
  • [3] Normal Forms for Codimension One Planar Piecewise Smooth Vector Fields
    de Carvalho, Tiago
    Tonon, Durval Jose
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (07):
  • [4] Sliding Vector Fields via Slow-Fast Systems
    Llibre, Jaume
    da Silva, Paulo R.
    Teixeira, Marco A.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (05) : 851 - 869
  • [5] SLOW-FAST COMPLEX VECTOR-FIELDS WITH ONE SLOW DIMENSION
    CALLOT, JL
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1993, 26 (02): : 149 - 173
  • [6] Structural stability and normal forms of piecewise smooth vector fields on R3
    De Carvalho, Tiago
    Tonon, Durval Jose
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4): : 255 - 274
  • [7] On the global structure of normal forms for slow-fast Hamiltonian systems
    Avendano Camacho, M.
    Vorobiev, Yu
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (02) : 138 - 148
  • [8] On the global structure of normal forms for slow-fast Hamiltonian systems
    M. Avendaño Camacho
    Yu. Vorobiev
    Russian Journal of Mathematical Physics, 2013, 20 : 138 - 148
  • [9] Boundary-equilibrium bifurcations in piecewise-smooth slow-fast systems
    Kowalczyk, P.
    Glendinning, P.
    CHAOS, 2011, 21 (02)
  • [10] A TOOL FOR THE LOCAL STUDY OF SLOW-FAST VECTOR-FIELDS - THE ZOOM
    DELCROIX, A
    LECTURE NOTES IN MATHEMATICS, 1991, 1493 : 151 - 167