Slow-Fast Normal Forms Arising from Piecewise Smooth Vector Fields

被引:1
|
作者
Perez, Otavio Henrique [1 ]
Rondon, Gabriel [2 ]
da Silva, Paulo Ricardo [2 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Inst Biosci Humanities & Exact Sci, Rua C Colombo 2265, BR-15054000 S J Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Geometric singular perturbation theory; Regularization of piecewise smooth vector fields; Transition function; SINGULAR PERTURBATION-THEORY; HIDDEN DYNAMICS;
D O I
10.1007/s10883-023-09657-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study planar piecewise smooth differential systems of the form [GRAPHICS] . where F : R-2 -> R is a smooth map having 0 as a regular value. We consider linear regularizations Z(epsilon)(phi) of Z by replacing sgn(F) by phi(F/epsilon) in the last equation, with epsilon > 0 small and phi being a transition function (not necessarily monotonic). Nonlinear regularizations of the vector field Z whose transition function is monotonic are considered too. It is a wellknown fact that the regularized system is a slow-fast system. In this paper, we study typical singularities of slow-fast systems that arise from (linear or nonlinear) regularizations, namely, fold, transcritical and pitchfork singularities. Furthermore, the dependence of the slow-fast system on the graphical properties of the transition function is investigated.
引用
收藏
页码:1709 / 1726
页数:18
相关论文
共 50 条
  • [32] FINITELY SMOOTH NORMAL FORMS OF VECTOR-FIELDS IN THE VICINITY OF A REST POINT
    BRONSTEIN, IU
    KOPANSKII, AY
    LECTURE NOTES IN MATHEMATICS, 1992, 1520 : 157 - 172
  • [33] On piecewise smooth vector fields tangent to nested tori
    Carvalho, Tiago
    Teixeira, Marco A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 4008 - 4029
  • [34] On the Closing Lemma for planar piecewise smooth vector fields
    de Carvalho, Tiago
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (06): : 1174 - 1185
  • [35] Symbolic dynamics of planar piecewise smooth vector fields
    Carvalho, Tiago
    Antunes, Andre do Amaral
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 : 150 - 174
  • [36] Relaxation Oscillations and Dynamical Properties in a Time Delay Slow-Fast Predator-Prey Model with a Piecewise Smooth Functional Response
    Qian, Youhua
    Peng, Yuhui
    Wang, Yufeng
    Lin, Bingwen
    MATHEMATICS, 2022, 10 (09)
  • [37] SMOOTH TO DISCONTINUOUS SYSTEMS: A GEOMETRIC AND NUMERICAL METHOD FOR SLOW-FAST DYNAMICS
    Dieci, Luca
    Elia, Cinzia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (07): : 2935 - 2950
  • [38] Normal forms for conformal vector fields
    Frances, Charles
    Melnick, Karin
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2013, 141 (03): : 377 - 421
  • [39] Normal forms of bireversible vector fields
    Baptistelli, P. H.
    Manoel, M.
    Zeli, I. O.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 154 : 102 - 126
  • [40] Dimension reduction for slow-fast, piecewise-linear ODEs and obstacles to a general theory
    Simpson, D. J. W.
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 439