Normal forms for conformal vector fields

被引:10
|
作者
Frances, Charles [1 ]
Melnick, Karin [2 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
来源
基金
美国国家科学基金会;
关键词
D O I
10.24033/bsmf.2652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish normal forms for conformal vector fields on pseudo-Riemannian manifolds in the neighborhood of a singularity. For real-analytic Lorentzian manifolds, we show that the vector field is analytically linearizable or the manifold is conformally flat. In either case, the vector field is locally conjugate to a normal form on a model space. For smooth metrics of general signature, we obtain the analogous result under the additional assumption that the differential of the flow at the fixed point is bounded.
引用
收藏
页码:377 / 421
页数:45
相关论文
共 50 条
  • [1] Normal forms of bireversible vector fields
    Baptistelli, P. H.
    Manoel, M.
    Zeli, I. O.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 154 : 102 - 126
  • [2] C∞-normal forms of local vector fields
    Belitskii, G
    ACTA APPLICANDAE MATHEMATICAE, 2002, 70 (1-3) : 23 - 41
  • [3] Further reduction of normal forms for vector fields
    Chen, GT
    NUMERICAL ALGORITHMS, 2001, 27 (01) : 1 - 33
  • [4] Normal Forms of ?-Hamiltonian Vector Fields with Symmetries
    Baptistelli, Patricia H.
    Hernandes, Maria Elenice R.
    Terezio, Eralcilene Moreira
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [5] Generalized normal forms for polynomial vector fields
    Palacián, J
    Yanguas, P
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (04): : 445 - 469
  • [6] Further Reduction of Normal Forms for Vector Fields
    Guoting Chen
    Numerical Algorithms, 2001, 27 : 1 - 33
  • [7] C∞-Normal Forms of Local Vector Fields
    G. Belitskii
    Acta Applicandae Mathematica, 2002, 70 : 23 - 41
  • [8] Closed conformal vector fields and Lagrangian submanifolds in complex space forms
    Castro, I
    Montealegre, CR
    Urbano, F
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 199 (02) : 269 - 302
  • [9] Normal forms of vector fields with perturbation parameters and their application
    Yu, Pei
    Leung, A. Y. T.
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 564 - 579
  • [10] Normal forms for periodic orbits of real vector fields
    Ping Wang
    Hao Wu
    Wei Gu Li
    Acta Mathematica Sinica, English Series, 2008, 24 : 797 - 808