Asymptotic stability and bifurcations of 3D piecewise smooth vector fields

被引:5
|
作者
Carvalho, Tiago [1 ]
Teixeira, Marco Antonio [2 ,3 ]
Tonon, Durval Jose [4 ]
机构
[1] UNESP, FC, BR-17033360 Bauru, SP, Brazil
[2] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
[3] UFSCar Campus Sorocaba, BR-18052780 Sorocaba, SP, Brazil
[4] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Cusp-fold singularity; Asymptotic stability; SINGULARITY;
D O I
10.1007/s00033-015-0603-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the analysis of the behavior of a nonsmooth three-dimensional vector field around a typal singularity. We focus on a class of generic one-parameter families Z(lambda) of Filippov systems and address the persistence problem for the asymptotic stability when the parameter varies near the bifurcation value lambda = 0.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Asymptotic stability and bifurcations of 3D piecewise smooth vector fields
    Tiago Carvalho
    Marco Antônio Teixeira
    Durval José Tonon
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [2] Attractivity, Degeneracy and Codimension of a Typical Singularity in 3D Piecewise Smooth Vector Fields
    Carvalho, Tiago
    Teixeira, Marco Antonio
    MILAN JOURNAL OF MATHEMATICS, 2019, 87 (02) : 233 - 248
  • [3] Attractivity, Degeneracy and Codimension of a Typical Singularity in 3D Piecewise Smooth Vector Fields
    Tiago Carvalho
    Marco Antonio Teixeira
    Milan Journal of Mathematics, 2019, 87 : 233 - 248
  • [4] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Gao, Yinghui
    Meng, Xiangying
    Lu, Qishao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (09) : 1239 - 1250
  • [5] Hopf-Like Bifurcations and Asymptotic Stability in a Class of 3D Piecewise Linear Systems with Applications
    Cristiano, Rony
    Tonon, Durval J.
    Velter, Mariana Q.
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (04)
  • [6] Hopf-Like Bifurcations and Asymptotic Stability in a Class of 3D Piecewise Linear Systems with Applications
    Rony Cristiano
    Durval J. Tonon
    Mariana Q. Velter
    Journal of Nonlinear Science, 2021, 31
  • [7] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Yinghui Gao
    Xiangying Meng
    Qishao Lu
    Applied Mathematics and Mechanics, 2016, 37 : 1239 - 1250
  • [8] Local and global bifurcations in 3D piecewise smooth discontinuous maps
    Patra, Mahashweta
    Gupta, Sayan
    Banerjee, Soumitro
    CHAOS, 2021, 31 (01)
  • [9] Border collision bifurcations in 3D piecewise smooth chaotic circuit
    Yinghui GAO
    Xiangying MENG
    Qishao LU
    Applied Mathematics and Mechanics(English Edition), 2016, 37 (09) : 1239 - 1250
  • [10] Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields
    Buzzi, Claudio A.
    Euzebio, Rodrigo D.
    Mereu, Ana C.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)