Bootstrap confidence intervals in multi-level simultaneous component analysis

被引:18
|
作者
Timmerman, Marieke E. [1 ]
Kiers, Henk A. L. [1 ]
Smilde, Age K. [2 ]
Ceulemans, Eva [3 ]
Stouten, Jeroen [3 ]
机构
[1] Univ Groningen, Heymans Inst Psychol, Groningen, Netherlands
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Univ Leuven, Louvain, Belgium
关键词
D O I
10.1348/000711007X265894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multi-level simultaneous component analysis (MLSCA) was designed for the exploratory analysis of hierarchically ordered data. MLSCA specifies a component model for each level in the data, where appropriate constraints express possible similarities between groups of objects at a certain level, yielding four MLSCA variants. The present paper discusses different bootstrap strategies for estimating confidence intervals (CIs) on the individual parameters. In selecting a proper strategy, the main issues to address are the resampling scheme and the non-uniqueness of the parameters. The resampling scheme depends on which level(s) in the hierarchy are considered random, and which fixed. The degree of non-uniqueness depends on the MLSCA variant, and, in two variants, the extent to which the user exploits the transformational freedom. A comparative simulation study examines the quality of bootstrap CIs of different MLSCA parameters. Generally, the quality of bootstrap CIs appears to be good, provided the sample sizes are sufficient at each level that is considered to be random. The latter implies that if more than a single level is considered random, the total number of observations necessary to obtain reliable inferential information increases dramatically. An empirical example illustrates the use of bootstrap CIs in MLSCA.
引用
收藏
页码:299 / 318
页数:20
相关论文
共 50 条
  • [1] On the Admissibility of Simultaneous Bootstrap Confidence Intervals
    Gao, Xin
    Konietschke, Frank
    Li, Qiong
    SYMMETRY-BASEL, 2021, 13 (07):
  • [2] Missing values in multi-level simultaneous component analysis
    Josse, Julie
    Timmerman, Marieke E.
    Kiers, Henk A. L.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 129 : 21 - 32
  • [3] Simultaneous confidence intervals based on the percentile bootstrap approach
    Mandel, Micha
    Betensky, Rebecca A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) : 2158 - 2165
  • [4] Effective dimensionality of environmental indicators: a principal component analysis with bootstrap confidence intervals
    Yu, CC
    Quinn, JT
    Dufournaud, CM
    Harrington, JJ
    Rogers, PP
    Lohani, BN
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 1998, 53 (01) : 101 - 119
  • [5] Effective dimensionality of environmental indicators: A principal component analysis with bootstrap confidence intervals
    Div. of Eng. and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
    不详
    不详
    不详
    J. Environ. Manage., 1 (101-119):
  • [6] Bootstrap confidence intervals
    DiCiccio, TJ
    Efron, B
    STATISTICAL SCIENCE, 1996, 11 (03) : 189 - 212
  • [7] Bootstrap confidence intervals for three-way component methods
    Kiers, HAL
    Classification - the Ubiquitous Challenge, 2005, : 73 - 84
  • [8] Multi-level independent component analysis
    Kim, Woong Myung
    Park, Chan Ho
    Lee, Hyon Soo
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1096 - 1102
  • [9] BETTER BOOTSTRAP CONFIDENCE-INTERVALS - BALM FOR BOOTSTRAP CONFIDENCE-INTERVALS - COMMENT
    PETERS, SC
    FREEDMAN, DA
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) : 186 - 187
  • [10] BOOTSTRAP CONFIDENCE-INTERVALS
    BABU, GJ
    BOSE, A
    STATISTICS & PROBABILITY LETTERS, 1988, 7 (02) : 151 - 160