Simultaneous confidence intervals based on the percentile bootstrap approach

被引:44
|
作者
Mandel, Micha [1 ]
Betensky, Rebecca A. [2 ]
机构
[1] Hebrew Univ Jerusalem, Dept Stat, IL-91905 Jerusalem, Israel
[2] Harvard Univ, Sch Publ Hlth, Cambridge, MA 02138 USA
关键词
Bonferroni; confidence region; discrete survival curve; multiple sclerosis; normal bound;
D O I
10.1016/j.csda.2007.07.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This note concerns the construction of bootstrap simultaneous confidence intervals (SCI) for m parameters. Given B bootstrap samples, we suggest an algorithm with complexity of O(mB log(B)). We apply our algorithm to construct a confidence region for time dependent probabilities of progression in multiple sclerosis and for coefficients in a logistic regression analysis. Alternative normal based simultaneous confidence intervals are presented and compared to the bootstrap intervals. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2158 / 2165
页数:8
相关论文
共 50 条
  • [1] On the Admissibility of Simultaneous Bootstrap Confidence Intervals
    Gao, Xin
    Konietschke, Frank
    Li, Qiong
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [2] On Properties of Percentile Bootstrap Confidence Intervals for Period Using Periodogram
    Hosseini-Nasab, S. Mohammad E.
    Vakili, Masoumeh
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2012, 41 (03) : 316 - 326
  • [3] A NOTE ON THE ACCURACY OF BOOTSTRAP PERCENTILE METHOD CONFIDENCE-INTERVALS FOR A QUANTILE
    HALL, P
    MARTIN, MA
    [J]. STATISTICS & PROBABILITY LETTERS, 1989, 8 (03) : 197 - 200
  • [4] A note on the coverage behaviour of bootstrap percentile confidence intervals for constrained parameters
    Chunlin Wang
    Paul Marriott
    Pengfei Li
    [J]. Metrika, 2022, 85 : 809 - 831
  • [5] A note on the coverage behaviour of bootstrap percentile confidence intervals for constrained parameters
    Wang, Chunlin
    Marriott, Paul
    Li, Pengfei
    [J]. METRIKA, 2022, 85 (07) : 809 - 831
  • [6] On properties of percentile bootstrap confidence intervals for prediction in functional linear regression
    Khademnoe, Omid
    Hosseini-Nasab, S. Mohammad E.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 170 : 129 - 143
  • [7] Percentile-t Bootstrap Confidence Intervals for Period Using Periodogram
    Hosseini-Nasab, S. Mohammad E.
    Vakili, Masoumeh
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (17) : 3053 - 3064
  • [8] Upper bounds on the true coverage of bootstrap percentile type confidence intervals
    Polansky, AM
    [J]. AMERICAN STATISTICIAN, 1999, 53 (04): : 362 - 369
  • [9] Finite-sample properties of percentile and percentile-t bootstrap confidence intervals for impulse responses
    Kilian, L
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 1999, 81 (04) : 652 - 660
  • [10] A new class of lifetime models and the evaluation of the confidence intervals by double percentile bootstrap
    Marinho, Pedro R. D.
    Bourguignon, Marcelo
    Silva, Rodrigo B.
    Cordeiro, Gauss M.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2019, 91 (01):