Multi-level independent component analysis

被引:0
|
作者
Kim, Woong Myung
Park, Chan Ho
Lee, Hyon Soo
机构
[1] Kyung Hee Univ, Dept Comp Engn, Yongin 449701, Gyeonggi, South Korea
[2] Bucheon Coll, Dept Internet Informat Sci, Puchon, Gyeonggi, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new method which uses multi-level density estimation technique to generate score function in ICA (independent Component Analysis). Score function is very closely related with density function in information theoretic ICA. We tried to solve mismatch of marginal densities by controlling the number of kernels. Also, we insert a constraint that can satisfy sufficient condition to guarantee asymptotic stability. Multi-level ICA uses kernel density estimation method in order to derive differential equation of source adaptively score function by original signals. To increase speed of kernel density estimation, we used FFT algorithm after changing density formula to convolution form. Proposed multi-level score function generation method reduces estimate error which is density difference between recovered signals and original signals. We estimate density function more similar to original signals compared with existent other algorithms in blind source separation problem and get improved performance in the SNR measurement.
引用
收藏
页码:1096 / 1102
页数:7
相关论文
共 50 条
  • [1] Missing values in multi-level simultaneous component analysis
    Josse, Julie
    Timmerman, Marieke E.
    Kiers, Henk A. L.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 129 : 21 - 32
  • [2] Bootstrap confidence intervals in multi-level simultaneous component analysis
    Timmerman, Marieke E.
    Kiers, Henk A. L.
    Smilde, Age K.
    Ceulemans, Eva
    Stouten, Jeroen
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2009, 62 : 299 - 318
  • [3] Scalable independent multi-level distribution in multimedia content analysis
    Eide, VSW
    Eliassen, F
    Granmo, OC
    Lysne, O
    [J]. PROTOCOLS AND SYSTEMS FOR INTERACTIVE DISTRIBUTED MULTIMEDIA, PROCEEDINGS, 2002, 2515 : 37 - 48
  • [4] Multi-level watermarking with independent decoding
    Butman, M
    Hel-Or, HZ
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 514 - 517
  • [5] Deep Kernel Principal Component Analysis for multi-level feature learning
    Tonin, Francesco
    Tao, Qinghua
    Patrinos, Panagiotis
    Suykens, Johan A.K.
    [J]. Neural Networks, 2024, 170 : 578 - 595
  • [6] Deep Kernel Principal Component Analysis for multi-level feature learning
    Tonin, Francesco
    Tao, Qinghua
    Patrinos, Panagiotis
    Suykens, Johan A. K.
    [J]. NEURAL NETWORKS, 2024, 170 : 578 - 595
  • [7] A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes
    Zhu, Wenjin
    Fouladirad, Mitra
    Berenguer, Christophe
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2016, 153 : 50 - 63
  • [8] Multi-level predictive maintenance for multi-component systems
    Nguyen, Kim-Anh
    Phuc Do
    Grall, Antoine
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2015, 144 : 83 - 94
  • [9] Synapse as a Multi-component and Multi-level Information System
    Proskura, A. L.
    Ratushnyak, A. S.
    Vechkapova, S. O.
    Zapara, T. A.
    [J]. ADVANCES IN NEURAL COMPUTATION, MACHINE LEARNING, AND COGNITIVE RESEARCH, 2018, 736 : 186 - 192
  • [10] Multi-level breakeven analysis
    不详
    [J]. BWK, 2006, 58 (1-2): : 17 - 17