Bootstrap confidence intervals in multi-level simultaneous component analysis

被引:18
|
作者
Timmerman, Marieke E. [1 ]
Kiers, Henk A. L. [1 ]
Smilde, Age K. [2 ]
Ceulemans, Eva [3 ]
Stouten, Jeroen [3 ]
机构
[1] Univ Groningen, Heymans Inst Psychol, Groningen, Netherlands
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Univ Leuven, Louvain, Belgium
关键词
D O I
10.1348/000711007X265894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multi-level simultaneous component analysis (MLSCA) was designed for the exploratory analysis of hierarchically ordered data. MLSCA specifies a component model for each level in the data, where appropriate constraints express possible similarities between groups of objects at a certain level, yielding four MLSCA variants. The present paper discusses different bootstrap strategies for estimating confidence intervals (CIs) on the individual parameters. In selecting a proper strategy, the main issues to address are the resampling scheme and the non-uniqueness of the parameters. The resampling scheme depends on which level(s) in the hierarchy are considered random, and which fixed. The degree of non-uniqueness depends on the MLSCA variant, and, in two variants, the extent to which the user exploits the transformational freedom. A comparative simulation study examines the quality of bootstrap CIs of different MLSCA parameters. Generally, the quality of bootstrap CIs appears to be good, provided the sample sizes are sufficient at each level that is considered to be random. The latter implies that if more than a single level is considered random, the total number of observations necessary to obtain reliable inferential information increases dramatically. An empirical example illustrates the use of bootstrap CIs in MLSCA.
引用
收藏
页码:299 / 318
页数:20
相关论文
共 50 条
  • [21] ON SYMMETRIC BOOTSTRAP CONFIDENCE-INTERVALS
    HALL, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (01): : 35 - 45
  • [22] Bootstrap Confidence Intervals for Noise Indicators
    Stepien, Bartlomiej
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2016, 102 (02) : 389 - 397
  • [23] Sequential iterated bootstrap confidence intervals
    Lee, SMS
    Young, GA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (01): : 235 - 251
  • [24] The Automatic Construction of Bootstrap Confidence Intervals
    Efron, Bradley
    Narasimhan, Balasubramanian
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 608 - 619
  • [25] Bootstrap confidence intervals for ratios of expectations
    Choquet, Denis
    L'Ecuyer, Pierre
    Léger, Christian
    ACM Transactions on Modeling and Computer Simulation, 1999, 9 (04): : 326 - 348
  • [26] Bootstrap confidence intervals for the Pareto index
    Guillou, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (01) : 211 - 226
  • [27] Bootstrap confidence intervals for tail indices
    Caers, J
    Beirlant, J
    Vynckier, P
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 26 (03) : 259 - 277
  • [28] A REVIEW OF BOOTSTRAP CONFIDENCE-INTERVALS
    DICICCIO, TJ
    ROMANO, JP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (03): : 338 - 354
  • [29] Test inversion bootstrap confidence intervals
    Carpenter, J
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 159 - 172
  • [30] WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS
    MacKinnon, James G.
    ACTUALITE ECONOMIQUE, 2015, 91 (1-2): : 11 - 33