Bootstrap confidence intervals in multi-level simultaneous component analysis

被引:18
|
作者
Timmerman, Marieke E. [1 ]
Kiers, Henk A. L. [1 ]
Smilde, Age K. [2 ]
Ceulemans, Eva [3 ]
Stouten, Jeroen [3 ]
机构
[1] Univ Groningen, Heymans Inst Psychol, Groningen, Netherlands
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Univ Leuven, Louvain, Belgium
关键词
D O I
10.1348/000711007X265894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multi-level simultaneous component analysis (MLSCA) was designed for the exploratory analysis of hierarchically ordered data. MLSCA specifies a component model for each level in the data, where appropriate constraints express possible similarities between groups of objects at a certain level, yielding four MLSCA variants. The present paper discusses different bootstrap strategies for estimating confidence intervals (CIs) on the individual parameters. In selecting a proper strategy, the main issues to address are the resampling scheme and the non-uniqueness of the parameters. The resampling scheme depends on which level(s) in the hierarchy are considered random, and which fixed. The degree of non-uniqueness depends on the MLSCA variant, and, in two variants, the extent to which the user exploits the transformational freedom. A comparative simulation study examines the quality of bootstrap CIs of different MLSCA parameters. Generally, the quality of bootstrap CIs appears to be good, provided the sample sizes are sufficient at each level that is considered to be random. The latter implies that if more than a single level is considered random, the total number of observations necessary to obtain reliable inferential information increases dramatically. An empirical example illustrates the use of bootstrap CIs in MLSCA.
引用
收藏
页码:299 / 318
页数:20
相关论文
共 50 条
  • [31] A note on bootstrap confidence intervals for proportions
    Wang, Weizhen
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (12) : 2699 - 2702
  • [32] WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS
    Mackinnon, James G.
    ACTUALITE ECONOMIQUE, 2020, 96 (04): : 721 - 743
  • [33] BOOTSTRAP METHODS - A REVIEW OF BOOTSTRAP CONFIDENCE-INTERVALS - DISCUSSION
    KENT, JT
    DAVISON, AC
    SILVERMAN, BW
    YOUNG, GA
    DANIELS, HE
    TONG, H
    GARTHWAITE, PH
    BUCKLAND, ST
    BERAN, R
    HALL, P
    KOSLOW, S
    STEWART, DW
    TIBSHIRANI, RJ
    TITTERINGTON, DM
    VERRALL, RJ
    WYNN, HP
    WU, CFJ
    HINKLEY, D
    DICICCIO, TJ
    ROMANO, JP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (03): : 355 - 370
  • [34] Estimating confidence intervals for principal component loadings: A comparison between the bootstrap and asymptotic results
    Timmerman, Marieke E.
    Kiers, Henk A. L.
    Smilde, Age K.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2007, 60 : 295 - 314
  • [35] Simultaneous confidence intervals for ratios of means of several lognormal distributions: A parametric bootstrap approach
    Sadooghi-Alvandi, S. M.
    Malekzadeh, A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 69 : 133 - 140
  • [36] Bootstrap confidence intervals for the simultaneous equations model under heavy-tailed contamination
    Gatto, R
    MATHEMATICAL AND COMPUTER MODELLING, 2001, 34 (9-11) : 1159 - 1170
  • [37] Multi-level bootstrap analysis of stable clusters in resting-state fMRI
    Bellec, Pierre
    Rosa-Neto, Pedro
    Lyttelton, Oliver C.
    Benali, Habib
    Evans, Alan C.
    NEUROIMAGE, 2010, 51 (03) : 1126 - 1139
  • [38] BOOTSTRAP CONFIDENCE-INTERVALS FOR SMOOTHING SPLINES AND THEIR COMPARISON TO BAYESIAN CONFIDENCE-INTERVALS
    WANG, YD
    WAHBA, G
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 51 (2-4) : 263 - 279
  • [39] Bootstrap confidence intervals for principal covariates regression
    Giordani, Paolo
    Kiers, Henk A. L.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2021, 74 (03): : 541 - 566
  • [40] Confidence intervals for endpoints of a cdf via bootstrap
    Athreya, KB
    Fukuchi, J
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 58 (02) : 299 - 320