The sharp Sobolev inequality in quantitative form

被引:64
|
作者
Cianchi, A. [1 ]
Fusco, N. [2 ]
Maggi, F. [3 ]
Pratelli, A. [4 ]
机构
[1] Dipartimento Matemat & Applicaz Architettura, I-50122 Florence, Italy
[2] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[3] Dipartimento Matemat, I-50134 Florence, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
ISOPERIMETRIC INEQUALITY; BOUNDED VARIATION; PRINCIPLE; REARRANGEMENTS; ASYMMETRY; DOMAINS;
D O I
10.4171/JEMS/176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quantitative version of the sharp Sobolev inequality in W(1, p)(R(n)), 1 < p < n, is established with a remainder term involving the distance from the family of extremals.
引用
收藏
页码:1105 / 1139
页数:35
相关论文
共 50 条
  • [41] Sharp reversed Hardy-Littlewood-Sobolev inequality with extension kernel
    Dai, Wei
    Hu, Yunyun
    Liu, Zhao
    STUDIA MATHEMATICA, 2023, 271 (01) : 1 - 38
  • [42] On a Sharp Sobolev‐Type Inequality on Two-Dimensional Compact Manifolds
    Margherita Nolasco
    Gabriella Tarantello
    Archive for Rational Mechanics and Analysis, 1998, 145 : 161 - 195
  • [43] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    WU Di
    SHI ZuoShunHua
    YAN DunYan
    ScienceChina(Mathematics), 2014, 57 (05) : 963 - 970
  • [44] Sharp Hardy-Littlewood-Sobolev Inequality on the Upper Half Space
    Dou, Jingbo
    Zhu, Meijun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 651 - 687
  • [45] A SHARP SOBOLEV TRACE INEQUALITY INVOLVING THE MEAN CURVATURE ON RIEMANNIAN MANIFOLDS
    Jin, Tianling
    Xiong, Jingang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) : 6751 - 6770
  • [46] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    Wu Di
    Shi ZuoShunHua
    Yan DunYan
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (05) : 963 - 970
  • [47] A Selection Principle for the Sharp Quantitative Isoperimetric Inequality
    Cicalese, Marco
    Leonardi, Gian Paolo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (02) : 617 - 643
  • [48] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    Di Wu
    ZuoShunHua Shi
    DunYan Yan
    Science China Mathematics, 2014, 57 : 963 - 970
  • [49] A sharp exponential inequality for Lorentz-Sobolev spaces on bounded domains
    Hudson, S
    Leckband, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) : 2029 - 2033
  • [50] A sharp quantitative isoperimetric inequality in higher codimension
    Boegelein, Verena
    Duzaar, Frank
    Fusco, Nicola
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2015, 26 (03) : 309 - 362