The sharp Sobolev inequality in quantitative form

被引:64
|
作者
Cianchi, A. [1 ]
Fusco, N. [2 ]
Maggi, F. [3 ]
Pratelli, A. [4 ]
机构
[1] Dipartimento Matemat & Applicaz Architettura, I-50122 Florence, Italy
[2] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[3] Dipartimento Matemat, I-50134 Florence, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
ISOPERIMETRIC INEQUALITY; BOUNDED VARIATION; PRINCIPLE; REARRANGEMENTS; ASYMMETRY; DOMAINS;
D O I
10.4171/JEMS/176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quantitative version of the sharp Sobolev inequality in W(1, p)(R(n)), 1 < p < n, is established with a remainder term involving the distance from the family of extremals.
引用
收藏
页码:1105 / 1139
页数:35
相关论文
共 50 条
  • [21] Sharp reversed Hardy–Littlewood–Sobolev inequality on Rn
    Quốc Anh Ngô
    Van Hoang Nguyen
    Israel Journal of Mathematics, 2017, 220 : 189 - 223
  • [22] The sharp convex mixed Lorentz-Sobolev inequality
    Fang, Niufa
    Xu, Wenxue
    Zhou, Jiazu
    Zhu, Baocheng
    ADVANCES IN APPLIED MATHEMATICS, 2019, 111
  • [23] Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality
    Rupert L. Frank
    Elliott H. Lieb
    Calculus of Variations and Partial Differential Equations, 2010, 39 : 85 - 99
  • [24] A sharp Hardy–Sobolev inequality with boundary term and applications
    Jonison L. Carvalho
    Marcelo F. Furtado
    Everaldo S. Medeiros
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [25] Towards a Fully Nonlinear Sharp Sobolev Trace Inequality
    Case, Jeffrey S.
    Wang, Yi
    JOURNAL OF MATHEMATICAL STUDY, 2020, 53 (04): : 402 - 435
  • [26] On the sharp Hardy inequality in Sobolev-Slobodeckii spaces
    Bianchi, Francesca
    Brasco, Lorenzo
    Zagati, Anna Chiara
    MATHEMATISCHE ANNALEN, 2024, 390 (01) : 493 - 555
  • [27] Sharp form of inequality for the constant e
    Chen, Chao-Ping
    Mortici, Cristinel
    CARPATHIAN JOURNAL OF MATHEMATICS, 2011, 27 (02) : 185 - 191
  • [28] SHARP FORM OF AN INEQUALITY BY N TRUDINGER
    MOSER, J
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (11) : 1077 - &
  • [29] Sharp quantitative stability of Poincare-Sobolev inequality in the hyperbolic space and applications to fast diffusion flows
    Bhakta, Mousomi
    Ganguly, Debdip
    Karmakar, Debabrata
    Mazumdar, Saikat
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (01)
  • [30] The sharp quantitative Euclidean concentration inequality
    Figalli, Alessio
    Maggi, Francesco
    Mooney, Connor
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2018, 6 (01) : 59 - 87