The sharp Sobolev inequality in quantitative form

被引:64
|
作者
Cianchi, A. [1 ]
Fusco, N. [2 ]
Maggi, F. [3 ]
Pratelli, A. [4 ]
机构
[1] Dipartimento Matemat & Applicaz Architettura, I-50122 Florence, Italy
[2] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[3] Dipartimento Matemat, I-50134 Florence, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
ISOPERIMETRIC INEQUALITY; BOUNDED VARIATION; PRINCIPLE; REARRANGEMENTS; ASYMMETRY; DOMAINS;
D O I
10.4171/JEMS/176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quantitative version of the sharp Sobolev inequality in W(1, p)(R(n)), 1 < p < n, is established with a remainder term involving the distance from the family of extremals.
引用
收藏
页码:1105 / 1139
页数:35
相关论文
共 50 条
  • [31] A sharp Hardy-Sobolev inequality with boundary term and applications
    Carvalho, Jonison L.
    Furtado, Marcelo F.
    Medeiros, Everaldo S.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):
  • [33] SHARP CONSTANT FOR Lp - L∞ TYPE SOBOLEV'S INEQUALITY
    Lou, Hongwei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 667 - 685
  • [34] A sharp Sobolev trace inequality for the fractional-order derivatives
    Xiao, J
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (01): : 87 - 96
  • [35] On the rate of change of the sharp constant in the Sobolev-Poincare inequality
    Carroll, Tom
    Fall, Mouhamed Moustapha
    Ratzkin, Jesse
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2185 - 2197
  • [36] Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality
    Frank, Rupert L.
    Lieb, Elliott H.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) : 85 - 99
  • [37] A SHARP ADAMS-TYPE INEQUALITY FOR WEIGHTED SOBOLEV SPACES
    do O, Joao Marcos
    Macedo, Abiel Costa
    de Oliveira, Jose Francisco
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (02): : 517 - 538
  • [38] The sharp affine L2 Sobolev trace inequality and variants
    De Napoli, P. L.
    Haddad, J.
    Jimenez, C. H.
    Montenegro, M.
    MATHEMATISCHE ANNALEN, 2018, 370 (1-2) : 287 - 308
  • [39] Asymptotic profile for the sub-extremals of the sharp Sobolev inequality on the sphere
    Druet, O
    Robert, F
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (5-6) : 743 - 778
  • [40] Sharp reversed Hardy-Littlewood-Sobolev inequality on R n
    Quoc Anh Ngo
    Van Hoang Nguyen
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (01) : 189 - 223