Sharp reversed Hardy-Littlewood-Sobolev inequality with extension kernel

被引:6
|
作者
Dai, Wei [1 ]
Hu, Yunyun [2 ]
Liu, Zhao [3 ]
机构
[1] Beihang Univ BUAA, Sch Math Sci, Beijing 100191, Peoples R China
[2] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
[3] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Peoples R China
基金
中国博士后科学基金;
关键词
existence of extremal functions; Eule-Lagrange equations; Pohozaev identity; Hardy-Littlewood-Sobolev inequality; STEIN-WEISS INEQUALITIES; CAFFARELLI-KOHN-NIRENBERG; FRACTIONAL INTEGRALS; POSITIVE SOLUTIONS; CLASSIFICATION; EXISTENCE; CONSTANTS; EQUATIONS; SYMMETRY; THEOREMS;
D O I
10.4064/sm220323-26-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the following reversed Hardy-Littlewood-Sobolev inequality with extension kernel: [GRAPHICS] for any nonnegative functions f E Lp( partial differential Rn+) and g E Lq ' (Rn+), where n > 2, p, q ' E (0, 1), alpha > n, 0 < beta < alpha-n n-1 , p > alpha-1-(n-1)beta are such that n-1 n-1 p + 1 1 q ' - alpha+beta-1 n = 1. We prove n the existence of extremal functions for the above inequality. Moreover, in the conformal invariant case, we classify all the extremal functions and hence derive the best constant via the method of moving spheres. It is quite surprising that the extremal functions do not depend on beta. Finally, we derive the sufficient and necessary conditions for existence of positive solutions to the Euler-Lagrange equations by using Pohozaev identities.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条
  • [1] Sharp reversed Hardy-Littlewood-Sobolev inequality on R n
    Quoc Anh Ngo
    Van Hoang Nguyen
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (01) : 189 - 223
  • [2] Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality
    Frank, Rupert L.
    Lieb, Elliott H.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) : 85 - 99
  • [3] Sharp Reversed Hardy-Littlewood-Sobolev Inequality on the Half Space R+n
    Quoc Anh Ngo
    Van Hoang Nguyen
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (20) : 6187 - 6230
  • [4] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    WU Di
    SHI ZuoShunHua
    YAN DunYan
    ScienceChina(Mathematics), 2014, 57 (05) : 963 - 970
  • [5] Sharp Hardy-Littlewood-Sobolev Inequality on the Upper Half Space
    Dou, Jingbo
    Zhu, Meijun
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 651 - 687
  • [6] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    Wu Di
    Shi ZuoShunHua
    Yan DunYan
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (05) : 963 - 970
  • [7] Sharp constants in the doubly weighted Hardy-Littlewood-Sobolev inequality
    Di Wu
    ZuoShunHua Shi
    DunYan Yan
    Science China Mathematics, 2014, 57 : 963 - 970
  • [8] Sharp reversed Hardy–Littlewood–Sobolev inequality on Rn
    Quốc Anh Ngô
    Van Hoang Nguyen
    Israel Journal of Mathematics, 2017, 220 : 189 - 223
  • [9] Hardy-Littlewood-Sobolev inequality and existence of the extremal functions with extended kernel
    Liu, Zhao
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (05) : 1683 - 1705
  • [10] On discrete reversed Hardy-Littlewood-Sobolev inequalities
    Zhou, Tiantian
    Lei, Yutian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,