An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data

被引:48
|
作者
Cheng, Lu [1 ,2 ]
Ramchandran, Siddharth [1 ]
Vatanen, Tommi [3 ,4 ]
Lietzen, Niina [5 ,6 ]
Lahesmaa, Riitta [5 ,6 ]
Vehtari, Aki [1 ]
Lahdesmaki, Harri [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Sch Sci, FI-00076 Aalto, Finland
[2] Cardiff Univ, Sch Biosci, Organisms & Environm Div, Microbiomes Microbes & Informat Grp, Cardiff CF10 3AX, S Glam, Wales
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Univ Auckland, Liggins Inst, Auckland 1023, New Zealand
[5] Univ Turku, Turku Ctr Biotechnol, FI-20520 Turku, Finland
[6] Abo Akad Univ, FI-20520 Turku, Finland
基金
芬兰科学院;
关键词
INFERENCE;
D O I
10.1038/s41467-019-09785-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomedical research typically involves longitudinal study designs where samples from individuals are measured repeatedly over time and the goal is to identify risk factors (covariates) that are associated with an outcome value. General linear mixed effect models are the standard workhorse for statistical analysis of longitudinal data. However, analysis of longitudinal data can be complicated for reasons such as difficulties in modelling correlated outcome values, functional (time-varying) covariates, nonlinear and non-stationary effects, and model inference. We present LonGP, an additive Gaussian process regression model that is specifically designed for statistical analysis of longitudinal data, which solves these commonly faced challenges. LonGP can model time-varying random effects and non-stationary signals, incorporate multiple kernel learning, and provide interpretable results for the effects of individual covariates and their interactions. We demonstrate LonGP's performance and accuracy by analysing various simulated and real longitudinal -omics datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [42] Non-parametric Regression for Circular Responses
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 238 - 255
  • [43] Parametrically guided non-parametric regression
    Glad, IK
    SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (04) : 649 - 668
  • [44] Non-parametric regression with wavelet kernels
    Rakotomamonjy, A
    Mary, X
    Canu, S
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (02) : 153 - 163
  • [45] Testing for additivity in non-parametric regression
    Zhang, Yichi
    Staicu, Ana-Maria
    Maity, Arnab
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (04): : 445 - 462
  • [46] Imitation Learning with Non-Parametric Regression
    Vaandrager, Maarten
    Babuska, Robert
    Busoniu, Lucian
    Lopes, Gabriel A. D.
    2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, THETA 18TH EDITION, 2012, : 91 - 96
  • [47] NITES: A Non-Parametric Interpretable Texture Synthesis Method
    Lei, Xuejing
    Zhao, Ganning
    Kuo, C-C Jay
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 1698 - 1706
  • [48] Influencing factors of the carbon dioxide emissions in China's commercial department: A non-parametric additive regression model
    Wen, Lei
    Shao, Hengyang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 668 : 1 - 12
  • [49] A Non-Parametric Regression Approach To The Analysis Of Genomewide Association Studies
    Kirdwichai, Pianpool
    Baksh, M. Fazil
    GENETIC EPIDEMIOLOGY, 2012, 36 (02) : 148 - 148
  • [50] TWO-CLASS Trees for Non-Parametric Regression Analysis
    Siciliano, Roberta
    Aria, Massimo
    CLASSIFICATION AND MULTIVARIATE ANALYSIS FOR COMPLEX DATA STRUCTURES, 2011, : 63 - 71