Non-parametric regression with wavelet kernels

被引:18
|
作者
Rakotomamonjy, A [1 ]
Mary, X [1 ]
Canu, S [1 ]
机构
[1] INSA, PSI FRE CNRS 2645, F-76801 St Etienne, France
关键词
reproducing kernel; wavelet; regression; regularization networks;
D O I
10.1002/asmb.533
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper introduces a method to construct a reproducing wavelet kernel Hilbert spaces for nonparametric regression estimation when the sampling points are not equally spaced. Another objective is to make high-dimensional wavelet estimation problems tractable. It then provides a theoretical foundation to build reproducing kernel from operators and a practical technique to obtain reproducing kernel Hilbert spaces spanned by a set of wavelets. A multiscale approximation technique that aims at taking advantage of the multiresolution structure of wavelets is also described. Examples on toy regression and a real-world problem illustrate the effectiveness of these wavelet kernels. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
  • [1] Non-parametric Representation Learning with Kernels
    Esser, Pascal
    Fleissner, Maximilian
    Ghoshdastidar, Debarghya
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 11, 2024, : 11910 - 11918
  • [2] Non-parametric regression for networks
    Severn, Katie E.
    Dryden, Ian L.
    Preston, Simon P.
    [J]. STAT, 2021, 10 (01):
  • [3] Non-parametric regression methods
    Ince H.
    [J]. Computational Management Science, 2006, 3 (2) : 161 - 174
  • [4] A note on combining parametric and non-parametric regression
    Rahman, M
    Gokhale, DV
    Ullah, A
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (02) : 519 - 529
  • [5] Wavelet analysis of change-points in a non-parametric regression with heteroscedastic variance
    Zhou, Yong
    Wan, Alan T. K.
    Xie, Shangyu
    Wang, Xiaojing
    [J]. JOURNAL OF ECONOMETRICS, 2010, 159 (01) : 183 - 201
  • [6] Time series prediction based on non-parametric regression and wavelet-fractal
    Hao, XF
    Xu, D
    [J]. 2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 388 - 391
  • [7] Non-Parametric Regression and Riesz Estimators
    Kountzakis, Christos
    Tsachouridou-Papadatou, Vasileia
    [J]. AXIOMS, 2023, 12 (04)
  • [8] Parametrically guided non-parametric regression
    Glad, IK
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (04) : 649 - 668
  • [9] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [10] Non-parametric Regression for Circular Responses
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 238 - 255