Parametrically guided non-parametric regression

被引:59
|
作者
Glad, IK [1 ]
机构
[1] Univ Oslo, Dept Math, N-0316 Oslo, Norway
关键词
bias reduction; correction factor; kernel estimators; local linear regression; local polynomial regression; semiparametric regression;
D O I
10.1111/1467-9469.00127
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a new approach to regression function estimation in which a nonparametric regression estimator is guided by a parametric pilot estimate with the aim of reducing the bias. New classes of parametrically guided kernel weighted Local polynomial estimators are introduced and formulae for asymptotic expectation and variance, hence approximated mean squared error and mean integrated squared error, are derived. It is shown that the new classes of estimators have the very same large sample variance as the estimators in the standard non-parametric setting, while there is substantial room for reducing the bias if the chosen parametric pilot function belongs to a wide neighbourhood around the true regression line. Bias reduction Is discussed in light of examples and simulations.
引用
收藏
页码:649 / 668
页数:20
相关论文
共 50 条
  • [1] Non-parametric regression for networks
    Severn, Katie E.
    Dryden, Ian L.
    Preston, Simon P.
    [J]. STAT, 2021, 10 (01):
  • [2] Non-parametric regression methods
    Ince H.
    [J]. Computational Management Science, 2006, 3 (2) : 161 - 174
  • [3] A note on combining parametric and non-parametric regression
    Rahman, M
    Gokhale, DV
    Ullah, A
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (02) : 519 - 529
  • [4] Non-Parametric Regression and Riesz Estimators
    Kountzakis, Christos
    Tsachouridou-Papadatou, Vasileia
    [J]. AXIOMS, 2023, 12 (04)
  • [5] Non-parametric regression with wavelet kernels
    Rakotomamonjy, A
    Mary, X
    Canu, S
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (02) : 153 - 163
  • [6] Non-parametric Regression for Circular Responses
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 238 - 255
  • [7] A NOTE ON NON-PARAMETRIC CENSORED REGRESSION
    MCLEISH, DL
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (01) : 1 - 6
  • [8] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [9] Non-parametric regression for compositional data
    Di Marzio, Marco
    Panzera, Agnese
    Venieri, Catia
    [J]. STATISTICAL MODELLING, 2015, 15 (02) : 113 - 133
  • [10] Imitation Learning with Non-Parametric Regression
    Vaandrager, Maarten
    Babuska, Robert
    Busoniu, Lucian
    Lopes, Gabriel A. D.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, THETA 18TH EDITION, 2012, : 91 - 96