Non-parametric regression with wavelet kernels

被引:18
|
作者
Rakotomamonjy, A [1 ]
Mary, X [1 ]
Canu, S [1 ]
机构
[1] INSA, PSI FRE CNRS 2645, F-76801 St Etienne, France
关键词
reproducing kernel; wavelet; regression; regularization networks;
D O I
10.1002/asmb.533
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper introduces a method to construct a reproducing wavelet kernel Hilbert spaces for nonparametric regression estimation when the sampling points are not equally spaced. Another objective is to make high-dimensional wavelet estimation problems tractable. It then provides a theoretical foundation to build reproducing kernel from operators and a practical technique to obtain reproducing kernel Hilbert spaces spanned by a set of wavelets. A multiscale approximation technique that aims at taking advantage of the multiresolution structure of wavelets is also described. Examples on toy regression and a real-world problem illustrate the effectiveness of these wavelet kernels. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
  • [31] Application of non-parametric regression to QSAR.
    Hirst, JD
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U437 - U437
  • [32] Non-parametric regression with a latent time series
    Linton, Oliver
    Nielsen, Jens Perch
    Nielsen, Soren Feodor
    [J]. ECONOMETRICS JOURNAL, 2009, 12 (02): : 187 - 207
  • [33] Test for Linearity in Non-Parametric Regression Models
    Khedidja, Djaballah-Djeddour
    Moussa, Tazerouti
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2022, 51 (01) : 16 - 34
  • [34] Non-parametric quantile regression with censored data
    Gannoun, A
    Saracco, J
    Yuan, A
    Bonney, GE
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) : 527 - 550
  • [35] Local Dimensionality Reduction for Non-Parametric Regression
    Hoffmann, Heiko
    Schaal, Stefan
    Vijayakumar, Sethu
    [J]. NEURAL PROCESSING LETTERS, 2009, 29 (02) : 109 - 131
  • [36] Comparing non-parametric regression lines via regression depth
    Wilcox, Rand R.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (04) : 379 - 387
  • [37] Smooth sigmoid wavelet shrinkage for non-parametric estimation
    Atto, Abdourrahmane M.
    Pastor, Dominique
    Mercier, Gregoire
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3265 - 3268
  • [38] USING WAVELET TO NON-PARAMETRIC GRADUATION OF MORTALITY RATES
    Baeza Sampere, Ismael
    Morillas Jurado, Francisco G.
    [J]. ANALES DEL INSTITUTO DE ACTUARIOS ESPANOLES, 2011, (17): : 135 - 164
  • [39] A new test for the parametric form of the variance function in non-parametric regression
    Dette, Holger
    Neurneyer, Natalie
    Van Keilegorn, Ingrid
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 903 - 917
  • [40] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    [J]. BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550