Test for Linearity in Non-Parametric Regression Models

被引:0
|
作者
Khedidja, Djaballah-Djeddour [1 ,3 ]
Moussa, Tazerouti [2 ,3 ,4 ]
机构
[1] USTHB, MSTD Lab, El Alia, Algeria
[2] Univ Boumerdes, Boumerdes, Algeria
[3] Univ Sci & Technol Houari Boumed, MSTD Lab Math, BP 32, El Alia 16111, Algeria
[4] Univ Mhamed Bougara Boumerdes, Dept Math, Ave Independance, Boumerdes 35000, Algeria
关键词
regression; non-linearity; Hermite coefficient; nonparametric regression; random design; GOODNESS-OF-FIT;
D O I
10.17713/ajs.v51i1.1047
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of checking the linearity of a regression relationship is addressed. The test uses nonparametric estimation techniques. The null hypothesis is that the regression function is linear; it is tested against the non-specic alternatives hypotheses. This test is based on a Hermite transform characterization of conditional expectations. A statistical test is derived, the distribution of this statistic under the null hypothesis of linearity is determined. A power study using simulation shows the new statistic to be more sensitive to non-linearity.
引用
收藏
页码:16 / 34
页数:19
相关论文
共 50 条