Averaged non-parametric regression in analysis of transformation models

被引:0
|
作者
Dabrowska, DM [1 ]
机构
[1] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One-sided semiparametric transformation models provide a common tool for analysis of failure time data. These models assume that conditionally on a vector of covariates Z, the failure time T has distribution function of the form F(Gamma(t),theta \ Z), where F(.,theta \ z) is a parametric family of distribution functions supported on the positive half-line and Gamma is an a.e. increasing transformation mapping the support of a continuous failure time T onto R+. Special cases include the proportional hazard, proportional odds and frailty models. The function Gamma can be in general interpreted in terms of conditional Q - Q plots. In this paper we discuss construction and properties of ad hoc estimates of the pair (theta,Gamma) based on a pseudo-profile likelihood obtained by averaging a nonparametric regression estimate of the conditional cumulative hazard function.
引用
收藏
页码:479 / 494
页数:16
相关论文
共 50 条
  • [1] Test for Linearity in Non-Parametric Regression Models
    Khedidja, Djaballah-Djeddour
    Moussa, Tazerouti
    AUSTRIAN JOURNAL OF STATISTICS, 2022, 51 (01) : 16 - 34
  • [2] Simple transformation techniques for improved non-parametric regression
    Park, BU
    Kim, WC
    Ruppert, D
    Jones, MC
    Signorini, DF
    Kohn, R
    SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (02) : 145 - 163
  • [3] Non-Parametric Identification and Estimation of Truncated Regression Models
    Chen, Songnian
    REVIEW OF ECONOMIC STUDIES, 2010, 77 (01): : 127 - 153
  • [4] Bivariate non-parametric regression models: simulations and applications
    Durio, A
    Isaia, ED
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (03) : 291 - 303
  • [5] Tests for independence in non-parametric heteroscedastic regression models
    Hlavka, Zdenek
    Huskova, Marie
    Meintanis, Simos G.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (04) : 816 - 827
  • [6] Non-parametric heteroscedastic transformation regression models for skewed data with an application to health care costs
    Zhou, Xiao-Hua
    Lin, Huazhen
    Johnson, Eric
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 1029 - 1047
  • [7] Analysis of parametric and non-parametric option pricing models
    Luo, Qiang
    Jia, Zhaoli
    Li, Hongbo
    Wu, Yongxin
    HELIYON, 2022, 8 (11)
  • [8] Non-parametric regression for networks
    Severn, Katie E.
    Dryden, Ian L.
    Preston, Simon P.
    STAT, 2021, 10 (01):
  • [9] Non-parametric regression methods
    Ince H.
    Computational Management Science, 2006, 3 (2) : 161 - 174
  • [10] Classification of non-parametric regression functions in longitudinal data models
    Vogt, Michael
    Linton, Oliver
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) : 5 - 27