Averaged non-parametric regression in analysis of transformation models

被引:0
|
作者
Dabrowska, DM [1 ]
机构
[1] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
来源
LIMIT THEOREMS IN PROBABILITY AND STATISTICS, VOL I | 2002年
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One-sided semiparametric transformation models provide a common tool for analysis of failure time data. These models assume that conditionally on a vector of covariates Z, the failure time T has distribution function of the form F(Gamma(t),theta \ Z), where F(.,theta \ z) is a parametric family of distribution functions supported on the positive half-line and Gamma is an a.e. increasing transformation mapping the support of a continuous failure time T onto R+. Special cases include the proportional hazard, proportional odds and frailty models. The function Gamma can be in general interpreted in terms of conditional Q - Q plots. In this paper we discuss construction and properties of ad hoc estimates of the pair (theta,Gamma) based on a pseudo-profile likelihood obtained by averaging a nonparametric regression estimate of the conditional cumulative hazard function.
引用
收藏
页码:479 / 494
页数:16
相关论文
共 50 条
  • [31] A Non-Parametric Regression Approach To The Analysis Of Genomewide Association Studies
    Kirdwichai, Pianpool
    Baksh, M. Fazil
    GENETIC EPIDEMIOLOGY, 2012, 36 (02) : 148 - 148
  • [32] TWO-CLASS Trees for Non-Parametric Regression Analysis
    Siciliano, Roberta
    Aria, Massimo
    CLASSIFICATION AND MULTIVARIATE ANALYSIS FOR COMPLEX DATA STRUCTURES, 2011, : 63 - 71
  • [33] Non-Parametric Path Analysis in Structural Causal Models
    Zhang, Junzhe
    Bareinboim, Elias
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 653 - 662
  • [34] The analysis of random systems with combined parametric and non-parametric uncertainty models
    Cicirello, A.
    Langley, R. S.
    PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010, 2010, : 1997 - 2009
  • [35] Sharp non-asymptotic oracle inequalities for non-parametric heteroscedastic regression models
    Galtchouka, L.
    Pergamenshchikovb, S.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (01) : 1 - 18
  • [36] Some non-parametric regression models for interval-valued functional data
    Nasirzadeh, Roya
    Nasirzadeh, Fariba
    Mohammadi, Zohreh
    STAT, 2022, 11 (01):
  • [37] Estimating individual treatment effects using non-parametric regression models: A review
    Caron, Alberto
    Baio, Gianluca
    Manolopoulou, Ioanna
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 (03) : 1115 - 1149
  • [38] A total variation based nonrigid image registration by combining parametric and non-parametric transformation models
    Hu, Wenrui
    Xie, Yuan
    Li, Lin
    Zhang, Wensheng
    NEUROCOMPUTING, 2014, 144 : 222 - 237
  • [39] Stochastic Optimization of Power Market Forecast Using Non-Parametric Regression Models
    Shenoy, Saahil
    Gorinevsky, Dimitry
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [40] Analysis of parametric and non-parametric regression techniques to model the wind turbine power curve
    Wadhvani, Rajesh
    Shukla, Sanyam
    WIND ENGINEERING, 2019, 43 (03) : 225 - 232