An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data

被引:48
|
作者
Cheng, Lu [1 ,2 ]
Ramchandran, Siddharth [1 ]
Vatanen, Tommi [3 ,4 ]
Lietzen, Niina [5 ,6 ]
Lahesmaa, Riitta [5 ,6 ]
Vehtari, Aki [1 ]
Lahdesmaki, Harri [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Sch Sci, FI-00076 Aalto, Finland
[2] Cardiff Univ, Sch Biosci, Organisms & Environm Div, Microbiomes Microbes & Informat Grp, Cardiff CF10 3AX, S Glam, Wales
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Univ Auckland, Liggins Inst, Auckland 1023, New Zealand
[5] Univ Turku, Turku Ctr Biotechnol, FI-20520 Turku, Finland
[6] Abo Akad Univ, FI-20520 Turku, Finland
基金
芬兰科学院;
关键词
INFERENCE;
D O I
10.1038/s41467-019-09785-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biomedical research typically involves longitudinal study designs where samples from individuals are measured repeatedly over time and the goal is to identify risk factors (covariates) that are associated with an outcome value. General linear mixed effect models are the standard workhorse for statistical analysis of longitudinal data. However, analysis of longitudinal data can be complicated for reasons such as difficulties in modelling correlated outcome values, functional (time-varying) covariates, nonlinear and non-stationary effects, and model inference. We present LonGP, an additive Gaussian process regression model that is specifically designed for statistical analysis of longitudinal data, which solves these commonly faced challenges. LonGP can model time-varying random effects and non-stationary signals, incorporate multiple kernel learning, and provide interpretable results for the effects of individual covariates and their interactions. We demonstrate LonGP's performance and accuracy by analysing various simulated and real longitudinal -omics datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [32] A Group MCP Approach for Structure Identification in Non-Parametric Accelerated Failure Time Additive Regression Model
    Hou, Sumin
    Lv, Hao
    Rajic, Vesna
    MATHEMATICS, 2023, 11 (22)
  • [33] NON-PARAMETRIC REGRESSION WITH CENSORED SURVIVAL-TIME DATA
    DABROWSKA, DM
    SCANDINAVIAN JOURNAL OF STATISTICS, 1987, 14 (03) : 181 - 197
  • [34] A non-parametric model to address overdispersed count response in a longitudinal data setting with missingness
    Zhang, Hui
    He, Hua
    Lu, Naiji
    Zhu, Liang
    Zhang, Bo
    Zhang, Zhiwei
    Tang, Li
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (03) : 1461 - 1475
  • [35] Non-parametric probabilistic load flow using Gaussian process learning
    Pareek, Parikshit
    Wang, Chuan
    Nguyen, Hung D.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 424
  • [36] Bayesian inference for longitudinal data with non-parametric treatment effects
    Mueller, Peter
    Quintana, Fernando A.
    Rosner, Gary L.
    Maitland, Michael L.
    BIOSTATISTICS, 2014, 15 (02) : 341 - 352
  • [37] Non-parametric analysis of a proportional wearout model for accelerated degradation data
    Ebrahem, MAH
    Higgins, JJ
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (01) : 365 - 373
  • [38] Using Non-Parametric Regression to Model Dormancy Requirements in Almonds
    Jarvis-Shean, K.
    Da Silva, D.
    Willits, N.
    DeJong, T. M.
    IX INTERNATIONAL SYMPOSIUM ON MODELLING IN FRUIT RESEARCH AND ORCHARD MANAGEMENT, 2015, 1068 : 133 - 140
  • [39] Non-Parametric Regression and Riesz Estimators
    Kountzakis, Christos
    Tsachouridou-Papadatou, Vasileia
    AXIOMS, 2023, 12 (04)
  • [40] A NOTE ON NON-PARAMETRIC CENSORED REGRESSION
    MCLEISH, DL
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (01) : 1 - 6