Can 2D-Nanocrystals Extend the Lifetime of Floating-Gate Transistor Based Nonvolatile Memory?

被引:37
|
作者
Cao, Wei [1 ]
Kang, Jiahao [1 ]
Bertolazzi, Simone [2 ]
Kis, Andras [2 ]
Banerjee, Kaustav [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Ecole Polytech Fed Lausanne, Dept Elect Engn, CH-1015 Lausanne, Switzerland
基金
美国国家科学基金会;
关键词
2D materials; CMOS scaling; dichalcogenide; floating-gate transistor; graphene; graphene/TMD heterostructures; memory; MoS2; MoSe2; NAND flash; transition metal; WS2; WSe2; VAPOR-PHASE GROWTH; PERFORMANCE ANALYSIS; BILAYER GRAPHENE; HIGH-QUALITY; MONOLAYER; LAYERS;
D O I
10.1109/TED.2014.2350483
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conventional floating-gate (FG) transistors (made with Si/poly-Si) that form the building blocks of the widely employed nonvolatile flash memory technology face severe scaling challenges beyond the 12-nm node. In this paper, for the first time, a comprehensive evaluation of the FG transistor made from emerging nanocrystals in the form of 2-dimensional (2D) transition metal dichalcogenides (TMDs) and multilayer graphene (MLG) is presented. It is shown that TMD based 2D channel materials have excellent gate length scaling potential due to their atomic scale thicknesses. On the other hand, employing MLG as FG greatly reduces cell-to-cell interference and alleviates reliability concerns. Moreover, it is also revealed that TMD/MLG heterostructures enable new mechanism for improving charge retention, thereby allowing the effective oxide thickness of gate dielectrics to be scaled to a few nanometers. Thus, this work indicates that judiciously selected 2D-nanocrystals can significantly extend the lifetime of the FG-based memory cell.
引用
收藏
页码:3456 / 3464
页数:9
相关论文
共 50 条
  • [1] Intrinsic mismatch between floating-gate nonvolatile memory cell and equivalent transistor
    Duane, Russell
    Rafhay, Quentin
    Beug, M. Florian
    van Duuren, Michiel
    [J]. IEEE ELECTRON DEVICE LETTERS, 2007, 28 (05) : 440 - 442
  • [2] Organic transistor nonvolatile memory with an integrated molecular floating-gate/tunneling layer
    Xu, Ting
    Guo, Shuxu
    Xu, Meili
    Li, Shizhang
    Xie, Wenfa
    Wang, Wei
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (24)
  • [3] Solution Processed Organic Transistor Nonvolatile Memory With a Floating-Gate of Carbon Nanotubes
    Wang, Guodong
    Liu, Xiaolian
    Wang, Wei
    [J]. IEEE ELECTRON DEVICE LETTERS, 2018, 39 (01) : 111 - 114
  • [4] NEW APPROACH FOR FLOATING-GATE MOS NONVOLATILE MEMORY
    LEE, HS
    [J]. APPLIED PHYSICS LETTERS, 1977, 31 (07) : 475 - 476
  • [5] Floating-gate nanofibrous electret arrays for high performance nonvolatile organic transistor memory devices
    Shi, Naien
    Liu, Dong
    Jin, Xiaolei
    Wu, Wandan
    Zhang, Jun
    Yi, Mingdong
    Xie, Linghai
    Guo, Fengning
    Yang, Lei
    Ou, Changjin
    Xue, Wei
    Huang, Wei
    [J]. ORGANIC ELECTRONICS, 2017, 49 : 218 - 225
  • [6] Nonvolatile memory with a metal nanocrystal/nitride heterogeneous floating-gate
    Lee, C
    Hou, TH
    Kan, ECC
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (12) : 2697 - 2702
  • [7] Nonvolatile floating-gate memory programming enhancement using well bias
    Makwana, JJ
    Schroder, DK
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (02) : 258 - 262
  • [8] DIFMOS - FLOATING-GATE ELECTRICALLY ERASABLE NONVOLATILE SEMICONDUCTOR MEMORY TECHNOLOGY
    GOSNEY, WM
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1977, 24 (05) : 594 - 599
  • [9] Multilevel memory characteristics by light-assisted programming in floating-gate organic thin-film transistor nonvolatile memory
    Ying, Jun
    Han, Jinhua
    Xiang, Lanyi
    Wang, Wei
    Xie, Wenfa
    [J]. CURRENT APPLIED PHYSICS, 2015, 15 (07) : 770 - 775
  • [10] Graphene-Based Floating-Gate Nonvolatile Optical Switch
    Li, Yan
    Yu, Hui
    Dai, Tingge
    Jiang, Jianfei
    Wang, Gencheng
    Yang, Longzhi
    Wang, Wanjun
    Yang, Jianyi
    Jiang, Xiaoqing
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (03) : 284 - 287