Analysing longitudinal count data with overdispersion

被引:48
|
作者
Jowaheer, V [1 ]
Sutradhar, BC
机构
[1] Univ Mauritius, Dept Math, Reduit, Mauritius
[2] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
consistency; efficiency; latent-process-driven longitudinal correlation; observations-driven longitudinal autocorrelation; overdispersion; regression effect;
D O I
10.1093/biomet/89.2.389
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many biomedical studies, longitudinal count data comprise repeated responses and a set of multidimensional covariates for a large number of individuals. When the response variable in such models is subject to overdispersion, the overdispersion parameter influences the marginal variance. In such cases, the overdispersion parameter plays a significant role in efficient estimation of the regression parameters. This raises the need for joint estimation of the regression parameters and the overdispersion parameter, the longitudinal correlations being nuisance parameters. In this paper, we develop a generalised estimating equations approach based on a general autocorrelation structure for the repeated over-dispersed data. The asymptotic properties of the estimators of the main parameters are discussed, and the estimation methodology is illustrated by analysing data on epileptic seizure counts.
引用
收藏
页码:389 / 399
页数:11
相关论文
共 50 条
  • [41] Modeling longitudinal count data with dropouts
    Alosh, Mohamed
    [J]. PHARMACEUTICAL STATISTICS, 2010, 9 (01) : 35 - 45
  • [42] A flexible joint modeling framework for longitudinal and time-to-event data with overdispersion
    Njagi, Edmund N.
    Molenberghs, Geert
    Rizopoulos, Dimitris
    Verbeke, Geert
    Kenward, Michael G.
    Dendale, Paul
    Willekens, Koen
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1661 - 1676
  • [43] On joint estimation of regression and overdispersion parameters in generalized linear models for longitudinal data
    Sutradhar, BC
    Rao, RP
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 56 (01) : 90 - 119
  • [44] Zero adjusted models with applications to analysing helminths count data
    Chipeta M.G.
    Ngwira B.M.
    Simoonga C.
    Kazembe L.N.
    [J]. BMC Research Notes, 7 (1)
  • [45] An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data
    Payne, Elizabeth H.
    Gebregziabher, Mulugeta
    Hardin, James W.
    Ramakrishnan, Viswanathan
    Egede, Leonard E.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1722 - 1738
  • [46] Using observation-level random effects to model overdispersion in count data in ecology and evolution
    Harrison, Xavier A.
    [J]. PEERJ, 2014, 2
  • [47] Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling
    Payne, Elizabeth H.
    Hardin, James W.
    Egede, Leonard E.
    Ramakrishnan, Viswanathan
    Selassie, Anbesaw
    Gebregziabher, Mulugeta
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (04) : 1802 - 1823
  • [48] Bayesian-type count data models with varying coefficients: estimation and testing in the presence of overdispersion
    Fahrmeir, L
    Mayer, J
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2001, 17 (02) : 165 - 179
  • [49] Bayesian Model Selection for Longitudinal Count Data
    Oludare Ariyo
    Emmanuel Lesaffre
    Geert Verbeke
    Adrian Quintero
    [J]. Sankhya B, 2022, 84 : 516 - 547
  • [50] Analyzing Unevenly Spaced Longitudinal Count Data
    Oyet A.J.
    Sutradhar B.C.
    [J]. Sankhya B, 2021, 83 (2) : 342 - 373