Analysing longitudinal count data with overdispersion

被引:48
|
作者
Jowaheer, V [1 ]
Sutradhar, BC
机构
[1] Univ Mauritius, Dept Math, Reduit, Mauritius
[2] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
consistency; efficiency; latent-process-driven longitudinal correlation; observations-driven longitudinal autocorrelation; overdispersion; regression effect;
D O I
10.1093/biomet/89.2.389
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many biomedical studies, longitudinal count data comprise repeated responses and a set of multidimensional covariates for a large number of individuals. When the response variable in such models is subject to overdispersion, the overdispersion parameter influences the marginal variance. In such cases, the overdispersion parameter plays a significant role in efficient estimation of the regression parameters. This raises the need for joint estimation of the regression parameters and the overdispersion parameter, the longitudinal correlations being nuisance parameters. In this paper, we develop a generalised estimating equations approach based on a general autocorrelation structure for the repeated over-dispersed data. The asymptotic properties of the estimators of the main parameters are discussed, and the estimation methodology is illustrated by analysing data on epileptic seizure counts.
引用
收藏
页码:389 / 399
页数:11
相关论文
共 50 条
  • [31] Detecting overdispersion in count data: A zero-inflated Poisson regression analysis
    Jamil, Siti Afiqah Muhamad
    Abdullah, M. Asrul Affendi
    Long, Kek Sie
    Nor, Maria Elena
    Mohamed, Maryati
    Ismail, Norradihah
    [J]. 1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [32] Local influence diagnostics for hierarchical count data models with overdispersion and excess zeros
    Rakhmawati, Trias Wahyuni
    Molenberghs, Geert
    Verbeke, Geert
    Faes, Christel
    [J]. BIOMETRICAL JOURNAL, 2016, 58 (06) : 1390 - 1408
  • [33] Random Forests in Count Data Modelling: An Analysis of the Influence of Data Features and Overdispersion on Regression Performance
    Mushagalusa, Ciza Arsene
    Fandohan, Adande Belarmain
    Glele Kakai, Romain
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2022, 2022
  • [34] Analysing correlated count data from field trials
    Alston, C
    Murison, R
    [J]. AUSTRALIAN JOURNAL OF EXPERIMENTAL AGRICULTURE, 1998, 38 (06): : 609 - 615
  • [35] Analysing panel count data with informative observation times
    Huang, Chiung-Yu
    Wang, Mei-Cheng
    Zhang, Ying
    [J]. BIOMETRIKA, 2006, 93 (04) : 763 - 775
  • [36] overdisp: an R package for direct detection of overdispersion in count data multiple regression analysis
    de Freitas Souza, Rafael
    Fávero, Luiz Paulo
    Belfiore, Patrícia
    Corrêa, Hamilton Luiz
    [J]. International Journal of Business Intelligence and Data Mining, 2022, 20 (03) : 327 - 344
  • [37] Population trends from count data: Handling environmental bias, overdispersion and excess of zeroes
    Tirozzi, Pietro
    Orioli, Valerio
    Dondina, Olivia
    Kataoka, Leila
    Bani, Luciano
    [J]. ECOLOGICAL INFORMATICS, 2022, 69
  • [38] Score tests for zero-inflation and overdispersion in two-level count data
    Lim, Hwa Kyung
    Song, Juwon
    Jung, Byoung Cheol
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 61 : 67 - 82
  • [39] Overdispersion tests in count-data analysis (vol 103, pg 145, 2008)
    Vives, J.
    Losilla, J-M
    Rodrigo, M-F
    Portell, M.
    Llorens, M.
    [J]. PSYCHOLOGICAL REPORTS, 2013, 113 (02) : 683 - 683
  • [40] Marginalized models for longitudinal count data
    Lee, Keunbaik
    Joo, Yongsung
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 136 : 47 - 58