Marginalized models for longitudinal count data

被引:0
|
作者
Lee, Keunbaik [1 ]
Joo, Yongsung [2 ]
机构
[1] Sungkyunkwan Univ, Dept Stat, Seoul 03063, South Korea
[2] Dongguk Univ Seoul, Dept Stat, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized linear models; Marginalized transition; Fisher-scoring; Markov structure; ORDINAL DATA; LONG SERIES; TIME-SERIES; INFERENCE;
D O I
10.1016/j.csda.2019.01.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose two marginalized models for longitudinal count data. The first marginalized model has a Markovian structure to account for the serial correlation of longitudinal outcomes. We also propose another marginalized model with a Markovian structure for serial correlation as well as random effects for both overdispersion and long-term dependence. In these models, along with it being possible to permit likelihood-based estimation, inference is valid under ignorability which distinguishes them from generalized estimating equation (GEE) approaches. Fisher-scoring and Quasi-Newton algorithms are developed for estimation purposes. Monte Carlo studies show that the proposed models perform well in the sense of reducing the bias of marginal mean parameters compared to the misspecification of the dependence model in these models. The models are used to draw inferences from a previously analyzed trial on epileptic seizures. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 58
页数:12
相关论文
共 50 条
  • [1] Marginalized Zero-Altered Models for Longitudinal Count Data
    Tabb L.P.
    Tchetgen E.J.T.
    Wellenius G.A.
    Coull B.A.
    Statistics in Biosciences, 2016, 8 (2) : 181 - 203
  • [2] Longitudinal nominal data analysis using marginalized models
    Lee, Keunbaik
    Mercante, Donald
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (01) : 208 - 218
  • [3] Flexible marginalized models for bivariate longitudinal ordinal data
    Lee, Keunbaik
    Daniels, Michael J.
    Joo, Yongsung
    BIOSTATISTICS, 2013, 14 (03) : 462 - 476
  • [4] Marginalized random effects models for multivariate longitudinal binary data
    Lee, Keunbaik
    Joo, Yongsung
    Yoo, Jae Keun
    Lee, JungBok
    STATISTICS IN MEDICINE, 2009, 28 (08) : 1284 - 1300
  • [5] Marginalized transition models and likelihood inference for longitudinal categorical data
    Heagerty, PJ
    BIOMETRICS, 2002, 58 (02) : 342 - 351
  • [6] Marginalized Zero-Inflated Bell Regression Models for Overdispersed Count Data
    Amani, Kouakou Mathias
    Kouakou, Konan Jean Geoffroy
    Hili, Ouagnina
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2025, 19 (02)
  • [7] Marginalized models for moderate to long series of longitudinal binary response data
    Schildcrout, Jonathan S.
    Heagerty, Patrick J.
    BIOMETRICS, 2007, 63 (02) : 322 - 331
  • [8] Analysis of long series of longitudinal ordinal data using marginalized models
    Lee, Keunbaik
    Sohn, Insuk
    Kim, Donguk
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 363 - 371
  • [9] Marginalized models for longitudinal ordinal data with application to quality of life studies
    Lee, Keunbaik
    Daniels, Michael J.
    STATISTICS IN MEDICINE, 2008, 27 (21) : 4359 - 4380
  • [10] Marginalized transition random effect models for multivariate longitudinal binary data
    Ilk, Ozlem
    Daniels, Michael J.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (01): : 105 - 123