Marginalized models for longitudinal count data

被引:0
|
作者
Lee, Keunbaik [1 ]
Joo, Yongsung [2 ]
机构
[1] Sungkyunkwan Univ, Dept Stat, Seoul 03063, South Korea
[2] Dongguk Univ Seoul, Dept Stat, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized linear models; Marginalized transition; Fisher-scoring; Markov structure; ORDINAL DATA; LONG SERIES; TIME-SERIES; INFERENCE;
D O I
10.1016/j.csda.2019.01.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose two marginalized models for longitudinal count data. The first marginalized model has a Markovian structure to account for the serial correlation of longitudinal outcomes. We also propose another marginalized model with a Markovian structure for serial correlation as well as random effects for both overdispersion and long-term dependence. In these models, along with it being possible to permit likelihood-based estimation, inference is valid under ignorability which distinguishes them from generalized estimating equation (GEE) approaches. Fisher-scoring and Quasi-Newton algorithms are developed for estimation purposes. Monte Carlo studies show that the proposed models perform well in the sense of reducing the bias of marginal mean parameters compared to the misspecification of the dependence model in these models. The models are used to draw inferences from a previously analyzed trial on epileptic seizures. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 58
页数:12
相关论文
共 50 条
  • [41] Statistical models for longitudinal zero-inflated count data: application to seizure attacks
    Mekonnen, Fenta Haile
    Lakew, Workie Demeke
    Tesfaye, Zike Dereje
    Swain, Prafulla Kumar
    AFRICAN HEALTH SCIENCES, 2019, 19 (03) : 2555 - 2564
  • [42] Two-part regression models for longitudinal zero-inflated count data
    Alfo, Marco
    Maruotti, Antonello
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (02): : 197 - 216
  • [43] Negative binomial mixed models for analyzing longitudinal CD4 count data
    Ashenafi A. Yirga
    Sileshi F. Melesse
    Henry G. Mwambi
    Dawit G. Ayele
    Scientific Reports, 10
  • [44] Negative binomial mixed models for analyzing longitudinal CD4 count data
    Yirga, Ashenafi A.
    Melesse, Sileshi F.
    Mwambi, Henry G.
    Ayele, Dawit G.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [45] A marginalized two-part model for longitudinal semicontinuous data
    Smith, Valerie A.
    Neelon, Brian
    Preisser, John S.
    Maciejewski, Matthew L.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (04) : 1949 - 1968
  • [46] BOOTSTRAPPING WITH MODELS FOR COUNT DATA
    Manly, Bryan F. J.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1164 - 1176
  • [47] Models for Count Data Reply
    Sellers, Kimberly R.
    Morris, Darcy S.
    Shmueli, Galit
    Zhu, Li
    AMERICAN STATISTICIAN, 2017, 71 (02): : 190 - 190
  • [48] GAMLSS for Longitudinal Multivariate Claim Count Models
    Turcotte, Roxane
    Boucher, Jean-Philippe
    NORTH AMERICAN ACTUARIAL JOURNAL, 2024, 28 (02) : 337 - 360
  • [49] Analysis of zero-inflated clustered count data: A marginalized model approach
    Lee, Keunbaik
    Joo, Yongsung
    Song, Joon Jin
    Harper, Dee Wood
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 824 - 837
  • [50] Comparison of Additive and Multiplicative Bayesian Models for Longitudinal Count Data with Overdispersion Parameters: A Simulation Study
    Aregay, Mehreteab
    Shkedy, Ziv
    Molenberghs, Geert
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) : 454 - 473