Negative binomial mixed models for analyzing longitudinal CD4 count data

被引:32
|
作者
Yirga, Ashenafi A. [1 ]
Melesse, Sileshi F. [1 ]
Mwambi, Henry G. [1 ]
Ayele, Dawit G. [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Private Bag X01, ZA-3209 Pietermaritzburg, South Africa
[2] Univ Maryland, Sch Med, Inst Human Virol, Baltimore, MD 21201 USA
基金
英国惠康基金;
关键词
REGRESSION; HIV-1;
D O I
10.1038/s41598-020-73883-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is of great interest for a biomedical analyst or an investigator to correctly model the CD4 cell count or disease biomarkers of a patient in the presence of covariates or factors determining the disease progression over time. The Poisson mixed-effects models (PMM) can be an appropriate choice for repeated count data. However, this model is not realistic because of the restriction that the mean and variance are equal. Therefore, the PMM is replaced by the negative binomial mixed-effects model (NBMM). The later model effectively manages the over-dispersion of the longitudinal data. We evaluate and compare the proposed models and their application to the number of CD4 cells of HIV-Infected patients recruited in the CAPRISA 002 Acute Infection Study. The results display that the NBMM has appropriate properties and outperforms the PMM in terms of handling over-dispersion of the data. Multiple imputation techniques are also used to handle missing values in the dataset to get valid inferences for parameter estimates. In addition, the results imply that the effect of baseline BMI, HAART initiation, baseline viral load, and the number of sexual partners were significantly associated with the patient's CD4 count in both fitted models. Comparison, discussion, and conclusion of the results of the fitted models complete the study.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Negative binomial mixed models for analyzing longitudinal CD4 count data
    Ashenafi A. Yirga
    Sileshi F. Melesse
    Henry G. Mwambi
    Dawit G. Ayele
    [J]. Scientific Reports, 10
  • [2] Negative binomial mixed models for analyzing microbiome count data
    Xinyan Zhang
    Himel Mallick
    Zaixiang Tang
    Lei Zhang
    Xiangqin Cui
    Andrew K. Benson
    Nengjun Yi
    [J]. BMC Bioinformatics, 18
  • [3] Negative binomial mixed models for analyzing microbiome count data
    Zhang, Xinyan
    Mallick, Himel
    Tang, Zaixiang
    Zhang, Lei
    Cui, Xiangqin
    Benson, Andrew K.
    Yi, Nengjun
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [4] Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data
    Zhang, Xinyan
    Pei, Yu-Fang
    Zhang, Lei
    Guo, Boyi
    Pendegraft, Amanda H.
    Zhuang, Wenzhuo
    Yi, Nengjun
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [5] Applying Negative Binomial Distribution in Diagnostic Classification Models for Analyzing Count Data
    Liu, Ren
    Heo, Ihnwhi
    Liu, Haiyan
    Shi, Dexin
    Jiang, Zhehan
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2022, : 64 - 75
  • [6] ANALYZING HISTORICAL COUNT DATA - POISSON AND NEGATIVE BINOMIAL REGRESSION-MODELS
    BECK, EM
    TOLNAY, SE
    [J]. HISTORICAL METHODS, 1995, 28 (03): : 125 - 131
  • [7] Additive quantile mixed effects modelling with application to longitudinal CD4 count data
    Ashenafi A. Yirga
    Sileshi F. Melesse
    Henry G. Mwambi
    Dawit G. Ayele
    [J]. Scientific Reports, 11
  • [8] Additive quantile mixed effects modelling with application to longitudinal CD4 count data
    Yirga, Ashenafi A.
    Melesse, Sileshi F.
    Mwambi, Henry G.
    Ayele, Dawit G.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Application of sensitivity analysis to incomplete longitudinal CD4 count data
    Iddrisu, Abdul-Karim
    Gumedze, Freedom
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (04) : 754 - 769
  • [10] Fast zero-inflated negative binomial mixed modeling approach for analyzing longitudinal metagenomics data
    Zhang, Xinyan
    Yi, Nengjun
    [J]. BIOINFORMATICS, 2020, 36 (08) : 2345 - 2351