Analysing longitudinal count data with overdispersion

被引:48
|
作者
Jowaheer, V [1 ]
Sutradhar, BC
机构
[1] Univ Mauritius, Dept Math, Reduit, Mauritius
[2] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
consistency; efficiency; latent-process-driven longitudinal correlation; observations-driven longitudinal autocorrelation; overdispersion; regression effect;
D O I
10.1093/biomet/89.2.389
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many biomedical studies, longitudinal count data comprise repeated responses and a set of multidimensional covariates for a large number of individuals. When the response variable in such models is subject to overdispersion, the overdispersion parameter influences the marginal variance. In such cases, the overdispersion parameter plays a significant role in efficient estimation of the regression parameters. This raises the need for joint estimation of the regression parameters and the overdispersion parameter, the longitudinal correlations being nuisance parameters. In this paper, we develop a generalised estimating equations approach based on a general autocorrelation structure for the repeated over-dispersed data. The asymptotic properties of the estimators of the main parameters are discussed, and the estimation methodology is illustrated by analysing data on epileptic seizure counts.
引用
收藏
页码:389 / 399
页数:11
相关论文
共 50 条
  • [21] Distribution-free models for longitudinal count responses with overdispersion and structural zeros
    Yu, Q.
    Chen, R.
    Tang, W.
    He, H.
    Gallop, R.
    Crits-Christoph, P.
    Hu, J.
    Tu, X. M.
    [J]. STATISTICS IN MEDICINE, 2013, 32 (14) : 2390 - 2405
  • [22] Differentially expressed heterogeneous overdispersion genes testing for count data
    Yuan, Yubai
    Xu, Qi
    Wani, Agaz
    Dahrendorff, Jan
    Wang, Chengqi
    Shen, Arlina
    Donglasan, Janelle
    Burgan, Sarah
    Graham, Zachary
    Uddin, Monica
    Wildman, Derek
    Qu, Annie
    [J]. PLOS ONE, 2024, 19 (07):
  • [23] Fast two-stage estimator for clustered count data with overdispersion
    Florez, Alvaro J.
    Molenberghs, Geert
    Verbeke, Geert
    Kenward, Michael G.
    Mamouris, Pavlos
    Vaes, Bert
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (14) : 2678 - 2693
  • [24] Using the negative binomial distribution to model overdispersion in ecological count data
    Linden, Andreas
    Mantyniemi, Samu
    [J]. ECOLOGY, 2011, 92 (07) : 1414 - 1421
  • [25] TESTING FOR OVERDISPERSION IN TRUNCATED COUNT DATA RECREATION DEMAND-FUNCTIONS
    GOMEZ, IA
    OZUNA, T
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 1993, 37 (02) : 117 - 125
  • [26] A general averaging method for count data with overdispersion and/or excess zeros in biomedicine
    Liu, Yin
    Zhou, Jianghong
    Chen, Zhanshou
    Zhang, Xinyu
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (05) : 904 - 926
  • [27] The consequences of checking for zero-inflation and overdispersion in the analysis of count data
    Campbell, Harlan
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2021, 12 (04): : 665 - 680
  • [28] The overdispersion test in count data as Gauss-Newton regression - Solution
    Berg, MD
    [J]. ECONOMETRIC THEORY, 2000, 16 (02) : 297 - 299
  • [29] Leaf count overdispersion in coffee seedlings
    Silva, Edilson Marcelino
    Ribeiro Furtado, Thais Destefani
    Fernandes, Jaqueline Goncalves
    Cirillo, Marcelo Angelo
    Muniz, Joel Augusto
    [J]. CIENCIA RURAL, 2019, 49 (04):
  • [30] A novel method for quantifying overdispersion in count data and its application to farmland birds
    Mcmahon, Barry J.
    Purvis, Gordon
    Sheridan, Helen
    Siriwardena, Gavin M.
    Parnell, Andrew C.
    [J]. IBIS, 2017, 159 (02) : 406 - 414