Distribution-free models for longitudinal count responses with overdispersion and structural zeros

被引:23
|
作者
Yu, Q. [1 ]
Chen, R. [1 ]
Tang, W. [1 ]
He, H. [1 ,2 ]
Gallop, R. [3 ]
Crits-Christoph, P. [3 ]
Hu, J. [1 ]
Tu, X. M. [1 ,2 ]
机构
[1] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Psychiat, Rochester, NY 14642 USA
[3] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA
关键词
functional response models; monotone missing data pattern; negative binomial; zero-inflated Poisson; weighted generalized estimating equations; INFLATED POISSON REGRESSION; ESTIMATING EQUATIONS; INFERENCE; PARAMETERS;
D O I
10.1002/sim.5691
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Overdispersion and structural zeros are two major manifestations of departure from the Poisson assumption when modeling count responses using Poisson log-linear regression. As noted in a large body of literature, ignoring such departures could yield bias and lead to wrong conclusions. Different approaches have been developed to tackle these two major problems. In this paper, we review available methods for dealing with overdispersion and structural zeros within a longitudinal data setting and propose a distribution-free modeling approach to address the limitations of these methods by utilizing a new class of functional response models. We illustrate our approach with both simulated and real study data. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:2390 / 2405
页数:16
相关论文
共 50 条
  • [1] Variable selection for distribution-free models for longitudinal zero-inflated count responses
    Chen, Tian
    Wu, Pan
    Tang, Wan
    Zhang, Hui
    Feng, Changyong
    Kowalski, Jeanne
    Tu, Xin M.
    [J]. STATISTICS IN MEDICINE, 2016, 35 (16) : 2770 - 2785
  • [2] A Distribution-Free Model for Longitudinal Metagenomic Count Data
    Luo, Dan
    Liu, Wenwei
    Chen, Tian
    An, Lingling
    [J]. GENES, 2022, 13 (07)
  • [3] Distribution-free models for latent mixed population responses in a longitudinal setting with missing data
    Zhang, Hui
    Tang, Li
    Kong, Yuanyuan
    Chen, Tian
    Liu, Xueyan
    Zhang, Zhiwei
    Zhang, Bo
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (10-11) : 3273 - 3285
  • [4] A Class of Distribution-Free Models for Longitudinal Mediation Analysis
    Gunzler D.
    Tang W.
    Lu N.
    Wu P.
    Tu X.M.
    [J]. Psychometrika, 2014, 79 (4) : 543 - 568
  • [5] A CLASS OF DISTRIBUTION-FREE MODELS FOR LONGITUDINAL MEDIATION ANALYSIS
    Gunzler, D.
    Tang, W.
    Lu, N.
    Wu, P.
    Tu, X. M.
    [J]. PSYCHOMETRIKA, 2014, 79 (04) : 543 - 568
  • [6] Distribution-free model selection for longitudinal zero-inflated count data with missing responses and covariates
    Chen, Chun-Shu
    Shen, Chung-Wei
    [J]. STATISTICS IN MEDICINE, 2022, 41 (16) : 3180 - 3198
  • [7] On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses
    Tang, Wan
    Lu, Naiji
    Chen, Tian
    Wang, Wenjuan
    Gunzler, Douglas David
    Han, Yu
    Tu, Xin M.
    [J]. STATISTICS IN MEDICINE, 2015, 34 (24) : 3235 - 3245
  • [8] SOME COVARIANCE-MODELS FOR LONGITUDINAL COUNT DATA WITH OVERDISPERSION
    THALL, PF
    VAIL, SC
    [J]. BIOMETRICS, 1990, 46 (03) : 657 - 671
  • [9] Local influence diagnostics for hierarchical count data models with overdispersion and excess zeros
    Rakhmawati, Trias Wahyuni
    Molenberghs, Geert
    Verbeke, Geert
    Faes, Christel
    [J]. BIOMETRICAL JOURNAL, 2016, 58 (06) : 1390 - 1408