A flexible joint modeling framework for longitudinal and time-to-event data with overdispersion

被引:6
|
作者
Njagi, Edmund N. [1 ]
Molenberghs, Geert [1 ,2 ]
Rizopoulos, Dimitris [3 ]
Verbeke, Geert [1 ,2 ]
Kenward, Michael G. [4 ]
Dendale, Paul [5 ,6 ]
Willekens, Koen [7 ]
机构
[1] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium
[2] Katholieke Univ Leuven, I BioStat, Leuven, Belgium
[3] Erasmus Univ, Dept Biostat, Med Ctr, Rotterdam, Netherlands
[4] London Sch Hyg & Trop Med, Med Stat Unit, London, England
[5] Hasselt Univ, Fac Med, Diepenbeek, Belgium
[6] Heart Ctr Hasselt, Jessa Hosp, Hasselt, Belgium
[7] Katholieke Univ Leuven, Fac Med, Leuven, Belgium
关键词
partial marginalization; Poisson-gamma-normal model; probit-beta-normal model; Weibull-gamma-normal model; PREDICTION;
D O I
10.1177/0962280213495994
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
We combine conjugate and normal random effects in a joint model for outcomes, at least one of which is non-Gaussian, with particular emphasis on cases in which one of the outcomes is of survival type. Conjugate random effects are used to relax the often-restrictive mean-variance prescription in the non-Gaussian outcome, while normal random effects account for not only the correlation induced by repeated measurements from the same subject but also the association between the different outcomes. Using a case study in chronic heart failure, we show that model fit can be improved, even resulting in impact on significance tests, by switching to our extended framework. By first taking advantage of the ease of analytical integration over conjugate random effects, we easily estimate our framework, by maximum likelihood, in standard software.
引用
收藏
页码:1661 / 1676
页数:16
相关论文
共 50 条
  • [1] Joint Modeling of Longitudinal and Time-to-Event Data
    Jacqmin-Gadda, Helene
    [J]. BIOMETRICS, 2018, 74 (01) : 383 - 384
  • [2] Joint modeling of longitudinal and time-to-event data: An overview
    Tsiatis, AA
    Davidian, M
    [J]. STATISTICA SINICA, 2004, 14 (03) : 809 - 834
  • [3] Editorial "Joint modeling of longitudinal and time-to-event data and beyond"
    Suarez, Carmen Cadarso
    Klein, Nadja
    Kneib, Thomas
    Molenberghs, Geert
    Rizopoulos, Dimitris
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1101 - 1103
  • [4] A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    Song, X
    Davidian, M
    Tsiatis, AA
    [J]. BIOMETRICS, 2002, 58 (04) : 742 - 753
  • [5] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    [J]. Journal of Computational and Applied Mathematics, 2021, 381
  • [6] Joint modeling of longitudinal and time-to-event data on multivariate protein biomarkers
    Thomas, Abin
    Vishwakarma, Gajendra K.
    Bhattacharjee, Atanu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
  • [7] A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data
    Kundu, Damitri
    Krishnan, Shekhar
    Gogoi, Manash Pratim
    Das, Kiranmoy
    [J]. LIFETIME DATA ANALYSIS, 2024, 30 (03) : 680 - 699
  • [8] Modeling biomarker variability in joint analysis of longitudinal and time-to-event data
    Wang, Chunyu
    Shen, Jiaming
    Charalambous, Christiana
    Pan, Jianxin
    [J]. BIOSTATISTICS, 2023, 25 (02) : 577 - 596
  • [9] Dynamic predictions using flexible joint models of longitudinal and time-to-event data
    Barrett, Jessica
    Su, Li
    [J]. STATISTICS IN MEDICINE, 2017, 36 (09) : 1447 - 1460
  • [10] An Overview of Joint Modeling of Time-to-Event and Longitudinal Outcomes
    Papageorgiou, Grigorios
    Mauff, Katya
    Tomer, Anirudh
    Rizopoulos, Dimitris
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 223 - 240