Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach

被引:0
|
作者
Abbas, Ahmed [1 ]
Swoboda, Paul [1 ]
机构
[1] Saarland Informat Campus, MPI Informat, Saarbrucken, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a fully differentiable architecture for simultaneous semantic and instance segmentation (a.k.a. panoptic segmentation) consisting of a convolutional neural network and an asymmetric multiway cut problem solver. The latter solves a combinatorial optimization problem that elegantly incorporates semantic and boundary predictions to produce a panoptic labeling. Our formulation allows to directly maximize a smooth surrogate of the panoptic quality metric by back-propagating the gradient through the optimization problem. Experimental evaluation shows improvement by backpropagating through the optimization problem w.r.t. comparable approaches on Cityscapes and COCO datasets. Overall, our approach of combinatorial optimization for panoptic segmentation (COPS) shows the utility of using optimization in tandem with deep learning in a challenging large scale real-world problem and showcases benefits and insights into training such an architecture.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Dual-CNN Fusion Panoptic Segmentation Based on Edge Optimization
    Li, Yaling
    Luo, Xiaoyan
    Shi, Xiaofeng
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [12] Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
    Li, Zhiqi
    Wang, Wenhai
    Xie, Enze
    Yu, Zhiding
    Anandkumar, Anima
    Alvarez, Jose M.
    Luo, Ping
    Lu, Tong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1270 - 1279
  • [13] A Survey of Panoptic Segmentation Methods
    Xu P.-B.
    Qu A.-G.
    Wang K.-F.
    Li D.-Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (03): : 549 - 568
  • [14] EfficientPS: Efficient Panoptic Segmentation
    Rohit Mohan
    Abhinav Valada
    International Journal of Computer Vision, 2021, 129 : 1551 - 1579
  • [15] Fast Panoptic Segmentation Network
    de Geus, Daan
    Meletis, Panagiotis
    Dubbelman, Gijs
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 1742 - 1749
  • [16] A Combinatorial Approach for Hyperspectral Image Segmentation
    Valero Medina, Jose Antonio
    Arbelaez Escalante, Pablo Andres
    Lizarazo Salcedo, Ivan Alberto
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT I, 2017, 10116 : 334 - 348
  • [17] EfficientPS: Efficient Panoptic Segmentation
    Mohan, Rohit
    Valada, Abhinav
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (05) : 1551 - 1579
  • [18] Panoptic Segmentation of Animal Fibers
    Rippel, Oliver
    Schoenfelder, Nikolaj
    Rahimi, Khosrow
    Kurniadi, Juliana
    Herrmann, Andreas
    Merhof, Dorit
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,
  • [19] Fully Data-Driven Pseudo Label Estimation for Pointly-Supervised Panoptic Segmentation
    Li, Jing
    Fan, Junsong
    Yang, Yuran
    Mei, Shuqi
    Xiao, Jun
    Zhang, Zhaoxiang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3127 - 3135
  • [20] Panoptic-PartFormer: Learning a Unified Model for Panoptic Part Segmentation
    Li, Xiangtai
    Xu, Shilin
    Yang, Yibo
    Cheng, Guangliang
    Tong, Yunhai
    Tao, Dacheng
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 729 - 747