Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach

被引:0
|
作者
Abbas, Ahmed [1 ]
Swoboda, Paul [1 ]
机构
[1] Saarland Informat Campus, MPI Informat, Saarbrucken, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a fully differentiable architecture for simultaneous semantic and instance segmentation (a.k.a. panoptic segmentation) consisting of a convolutional neural network and an asymmetric multiway cut problem solver. The latter solves a combinatorial optimization problem that elegantly incorporates semantic and boundary predictions to produce a panoptic labeling. Our formulation allows to directly maximize a smooth surrogate of the panoptic quality metric by back-propagating the gradient through the optimization problem. Experimental evaluation shows improvement by backpropagating through the optimization problem w.r.t. comparable approaches on Cityscapes and COCO datasets. Overall, our approach of combinatorial optimization for panoptic segmentation (COPS) shows the utility of using optimization in tandem with deep learning in a challenging large scale real-world problem and showcases benefits and insights into training such an architecture.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Unifying Panoptic Segmentation for Autonomous Driving
    Zendel, Oliver
    Schoerghuber, Matthias
    Rainer, Bernhard
    Murschitz, Markus
    Beleznai, Csaba
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21319 - 21328
  • [32] Panoptic Segmentation Meets Remote Sensing
    de Carvalho, Osmar Luiz Ferreira
    de Carvalho Junior, Osmar Abilio
    Silva, Cristiano Rosa e
    de Albuquerque, Anesmar Olino
    Santana, Nickolas Castro
    Borges, Dibio Leandro
    Gomes, Roberto Arnaldo Trancoso
    Guimaraes, Renato Fontes
    REMOTE SENSING, 2022, 14 (04)
  • [33] Pointly-Supervised Panoptic Segmentation
    Fan, Junsong
    Zhang, Zhaoxiang
    Tan, Tieniu
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 319 - 336
  • [34] LiDAR Panoptic Segmentation for Autonomous Driving
    Milioto, Andres
    Behley, Jens
    McCool, Chris
    Stachniss, Cyrill
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8505 - 8512
  • [35] A Unified Neural Network for Panoptic Segmentation
    Yao, L.
    Chyau, A.
    COMPUTER GRAPHICS FORUM, 2019, 38 (07) : 461 - 468
  • [36] Uncertainty-Aware Panoptic Segmentation
    Sirohi, Kshitij
    Marvi, Sajad
    Buescher, Daniel
    Burgard, Wolfram
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05): : 2629 - 2636
  • [37] CNN Based Transformer for Panoptic Segmentation
    Mao L.
    Ren F.-Z.
    Yang D.-W.
    Zhang R.-B.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (07): : 3408 - 3421
  • [38] UPSNet: A Unified Panoptic Segmentation Network
    Xiong, Yuwen
    Liao, Renjie
    Zhao, Hengshuang
    Hu, Rui
    Bai, Min
    Yumer, Ersin
    Urtasun, Raquel
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8810 - 8818
  • [39] Panoptic Segmentation of Wounds in a Pig Model
    Tavolara, Thomas E.
    Jorgensen, Adam M.
    Gurcan, Metin N.
    Murphy, Sean, V
    Niazi, M. K. K.
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [40] Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation
    Borse, Shubhankar
    Park, Hyojin
    Cai, Hong
    Das, Debasmit
    Garrepalli, Risheek
    Porikli, Fatih
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1259 - 1269