Combinatorial Optimization for Panoptic Segmentation: A Fully Differentiable Approach

被引:0
|
作者
Abbas, Ahmed [1 ]
Swoboda, Paul [1 ]
机构
[1] Saarland Informat Campus, MPI Informat, Saarbrucken, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a fully differentiable architecture for simultaneous semantic and instance segmentation (a.k.a. panoptic segmentation) consisting of a convolutional neural network and an asymmetric multiway cut problem solver. The latter solves a combinatorial optimization problem that elegantly incorporates semantic and boundary predictions to produce a panoptic labeling. Our formulation allows to directly maximize a smooth surrogate of the panoptic quality metric by back-propagating the gradient through the optimization problem. Experimental evaluation shows improvement by backpropagating through the optimization problem w.r.t. comparable approaches on Cityscapes and COCO datasets. Overall, our approach of combinatorial optimization for panoptic segmentation (COPS) shows the utility of using optimization in tandem with deep learning in a challenging large scale real-world problem and showcases benefits and insights into training such an architecture.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] DEEP MARKOV CLUSTERING FOR PANOPTIC SEGMENTATION
    Ye, Minxiang
    Zhang, Yifei
    Zhu, Shiqiang
    Xie, Anhuan
    Zhang, Dan
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2380 - 2384
  • [42] EfficientLPS: Efficient LiDAR Panoptic Segmentation
    Sirohi, Kshitij
    Mohan, Rohit
    Buescher, Daniel
    Burgard, Wolfram
    Valada, Abhinav
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (03) : 1894 - 1914
  • [43] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161
  • [44] Lidar Panoptic Segmentation in an Open World
    Chakravarthy, Anirudh S.
    Ganesina, Meghana Reddy
    Hu, Peiyun
    Leal-Taixe, Laura
    Kong, Shu
    Ramanan, Deva
    Osep, Aljosa
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1153 - 1174
  • [45] Unifying Training and Inference for Panoptic Segmentation
    Li, Qizhu
    Qi, Xiaojuan
    Torr, Philip H. S.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 13317 - 13325
  • [46] Panoptic Out-of-Distribution Segmentation
    Mohan, Rohit
    Kumaraswamy, Kiran
    Hurtado, Juana Valeria
    Petek, Kursat
    Valada, Abhinav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4075 - 4082
  • [47] Strike a Balance in Continual Panoptic Segmentation
    Chen, Jinpeng
    Cong, Runmin
    Luo, Yuxuan
    Ip, Horace Ho Shing
    Kwong, Sam
    COMPUTER VISION - ECCV 2024, PT XLI, 2025, 15099 : 126 - 142
  • [48] Panoptic Nuscenes: A Large-Scale Benchmark for LiDAR Panoptic Segmentation and Tracking
    Fong, Whye Kit
    Mohan, Rohit
    Hurtado, Juana Valeria
    Zhou, Lubing
    Caesar, Holger
    Beijbom, Oscar
    Valada, Abhinav
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3795 - 3802
  • [49] Panoptic-SLAM: Visual SLAM in Dynamic Environments using Panoptic Segmentation
    Abati, Gahriel Fischer
    Soares, Joao Carlos Virgolino
    Medeiros, Vivian Suzano
    Meggiolaro, Marco Antonio
    Semini, Claudio
    2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 762 - 769
  • [50] Combinatorial optimization approaches to constrained market segmentation: An application to industrial market segmentation
    Desarbo W.S.
    Grisaffe D.
    Marketing Letters, 1998, 9 (2) : 115 - 134