Panoptic-PartFormer: Learning a Unified Model for Panoptic Part Segmentation

被引:8
|
作者
Li, Xiangtai [1 ]
Xu, Shilin [1 ]
Yang, Yibo [1 ]
Cheng, Guangliang [2 ]
Tong, Yunhai [1 ]
Tao, Dacheng [3 ]
机构
[1] Peking Univ, Key Lab Machine Percept, MOE, Sch Artificial Intelligence, Beijing, Peoples R China
[2] SenseTime Res, Hong Kong, Peoples R China
[3] JD Explore Acad, Beijing, Peoples R China
来源
关键词
Panoptic Part Segmentation; Scene understanding; Vision Transformer;
D O I
10.1007/978-3-031-19812-0_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Panoptic Part Segmentation (PPS) aims to unify panoptic segmentation and part segmentation into one task. Previous work mainly utilizes separated approaches to handle thing, stuff, and part predictions individually without performing any shared computation and task association. In this work, we aim to unify these tasks at the architectural level, designing the first end-to-end unified method named Panoptic-PartFormer. In particular, motivated by the recent progress in Vision Transformer, we model things, stuff, and part as object queries and directly learn to optimize the all three predictions as unified mask prediction and classification problem. We design a decoupled decoder to generate part feature and thing/stuff feature respectively. Then we propose to utilize all the queries and corresponding features to perform reasoning jointly and iteratively. The final mask can be obtained via inner product between queries and the corresponding features. The extensive ablation studies and analysis prove the effectiveness of our framework. Our Panoptic-PartFormer achieves the new state-of-the-art results on both Cityscapes PPS and Pascal Context PPS datasets with around 70% GFlops and 50% parameters decrease. Given its effectiveness and conceptual simplicity, we hope the Panoptic-PartFormer can serve as a strong baseline and aid future research in PPS. Our code and models will be available at https://github.com/lxtGH/Panoptic-PartFormer.
引用
收藏
页码:729 / 747
页数:19
相关论文
共 50 条
  • [1] A Unified Neural Network for Panoptic Segmentation
    Yao, L.
    Chyau, A.
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (07) : 461 - 468
  • [2] UPSNet: A Unified Panoptic Segmentation Network
    Xiong, Yuwen
    Liao, Renjie
    Zhao, Hengshuang
    Hu, Rui
    Bai, Min
    Yumer, Ersin
    Urtasun, Raquel
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8810 - 8818
  • [3] Part-aware Panoptic Segmentation
    de Geus, Daan
    Meletis, Panagiotis
    Lu, Chenyang
    Wen, Xiaoxiao
    Dubbelman, Gijs
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5481 - 5490
  • [4] Unified Network With Detail Guidance for Panoptic Segmentation
    Sun, Qingwei
    Chao, Jiangang
    Lin, Wanhong
    Xu, Zhenying
    Chen, Wei
    [J]. IEEE ACCESS, 2023, 11 : 91937 - 91948
  • [5] PUPS: Point Cloud Unified Panoptic Segmentation
    Su, Shihao
    Xu, Jianyun
    Wang, Huanyu
    Miao, Zhenwei
    Zhan, Xin
    Hao, Dayang
    Li, Xi
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2339 - 2347
  • [6] Panoptic Segmentation
    Kirillov, Alexander
    He, Kaiming
    Girshick, Ross
    Rother, Carsten
    Dollar, Piotr
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9396 - 9405
  • [7] PolyphonicFormer: Unified Query Learning for Depth-Aware Video Panoptic Segmentation
    Yuan, Haobo
    Li, Xiangtai
    Yang, Yibo
    Cheng, Guangliang
    Zhang, Jing
    Tong, Yunhai
    Zhang, Lefei
    Tao, Dacheng
    [J]. COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 582 - 599
  • [8] Attention-guided Unified Network for Panoptic Segmentation
    Li, Yanwei
    Chen, Xinze
    Zhu, Zheng
    Xie, Lingxi
    Huang, Guan
    Du, Dalong
    Wang, Xingang
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7019 - 7028
  • [9] Panoptic Segmentation of Wounds in a Pig Model
    Tavolara, Thomas E.
    Jorgensen, Adam M.
    Gurcan, Metin N.
    Murphy, Sean, V
    Niazi, M. K. K.
    [J]. MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [10] Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
    Li, Zhiqi
    Wang, Wenhai
    Xie, Enze
    Yu, Zhiding
    Anandkumar, Anima
    Alvarez, Jose M.
    Luo, Ping
    Lu, Tong
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1270 - 1279