Panoptic Segmentation

被引:651
|
作者
Kirillov, Alexander [1 ,2 ]
He, Kaiming [1 ]
Girshick, Ross [1 ]
Rother, Carsten [2 ]
Dollar, Piotr [1 ]
机构
[1] Facebook AI Res FAIR, Austin, TX 78719 USA
[2] Heidelberg Univ, HCI IWR, Heidelberg, Germany
基金
欧洲研究理事会;
关键词
D O I
10.1109/CVPR.2019.00963
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose and study a task we name panoptic segmentation (PS). Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (assign a class label to each pixel) and instance segmentation (detect and segment each object instance). The proposed task requires generating a coherent scene segmentation that is rich and complete, an important step toward real-world vision systems. While early work in computer vision addressed related image/scene parsing tasks, these are not currently popular, possibly due to lack of appropriate metrics or associated recognition challenges. To address this, we propose a novel panoptic quality (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner. Using the proposed metric, we perform a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task. The aim of our work is to revive the interest of the community in a more unified view of image segmentation.
引用
收藏
页码:9396 / 9405
页数:10
相关论文
共 50 条
  • [1] Panoptic Segmentation Forecasting
    Graber, Colin
    Tsai, Grace
    Firman, Michael
    Brostow, Gabriel
    Schwing, Alexander
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12512 - 12521
  • [2] Panoptic Segmentation Forecasting
    Graber, Colin
    Tsai, Grace
    Firman, Michael
    Brostow, Gabriel
    Schwing, Alexander
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2279 - 2288
  • [3] Amodal Panoptic Segmentation
    Mohan, Rohit
    Valada, Abhinav
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 20991 - 21000
  • [4] Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
    Li, Zhiqi
    Wang, Wenhai
    Xie, Enze
    Yu, Zhiding
    Anandkumar, Anima
    Alvarez, Jose M.
    Luo, Ping
    Lu, Tong
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1270 - 1279
  • [5] A Survey of Panoptic Segmentation Methods
    Xu P.-B.
    Qu A.-G.
    Wang K.-F.
    Li D.-Z.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (03): : 549 - 568
  • [6] Fast Panoptic Segmentation Network
    de Geus, Daan
    Meletis, Panagiotis
    Dubbelman, Gijs
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 1742 - 1749
  • [7] EfficientPS: Efficient Panoptic Segmentation
    Rohit Mohan
    Abhinav Valada
    [J]. International Journal of Computer Vision, 2021, 129 : 1551 - 1579
  • [8] EfficientPS: Efficient Panoptic Segmentation
    Mohan, Rohit
    Valada, Abhinav
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (05) : 1551 - 1579
  • [9] Panoptic Segmentation of Animal Fibers
    Rippel, Oliver
    Schoenfelder, Nikolaj
    Rahimi, Khosrow
    Kurniadi, Juliana
    Herrmann, Andreas
    Merhof, Dorit
    [J]. 2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,
  • [10] Panoptic-PartFormer++: A Unified and Decoupled View for Panoptic Part Segmentation
    Li, Xiangtai
    Xu, Shilin
    Yang, Yibo
    Yuan, Haobo
    Cheng, Guangliang
    Tong, Yunhai
    Lin, Zhouchen
    Yang, Ming-Hsuan
    Tao, Dacheng
    [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (12) : 11087 - 11103