Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation

被引:84
|
作者
Zhou, Jingtian [1 ,2 ]
Ma, Jianzhu [3 ]
Chen, Yusi [4 ,5 ]
Cheng, Chuankai [6 ]
Bao, Bokan [2 ]
Peng, Jian [7 ]
Sejnowski, Terrence J. [4 ,5 ]
Dixon, Jesse R. [8 ]
Ecker, Joseph R. [1 ,9 ]
机构
[1] Salk Inst Biol Studies, Genom Anal Lab, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Bioinformat & Syst Biol Program, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[4] Salk Inst Biol Studies, Computat Neurobiol Lab, La Jolla, CA 92037 USA
[5] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[7] Univ Illinois, gDept Comp Sci, Urbana, IL 61801 USA
[8] Salk Inst Biol Studies, Peptide Biol Lab, La Jolla, CA 92037 USA
[9] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
关键词
single cell; Hi-C; 3D chromosome structure; random walk; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; DYNAMICS; REORGANIZATION; ORGANIZATION; DOMAINS;
D O I
10.1073/pnas.1901423116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe scHiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real single-cell Hi-C data as benchmarks, scHiCluster significantly improves clustering accuracy when applied to low coverage datasets compared with existing methods. After imputation by scHiCluster, topologically associating domain (TAD)-like structures (TLSs) can be identified within single cells, and their consensus boundaries were enriched at the TAD boundaries observed in bulk cell Hi-C samples. In summary, scHiCluster facilitates visualization and comparison of single-cell 3D genomes.
引用
收藏
页码:14011 / 14018
页数:8
相关论文
共 50 条
  • [1] Subgraph extraction and graph representation learning for single cell Hi-C imputation and clustering
    Zheng, Jiahao
    Yang, Yuedong
    Dai, Zhiming
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [2] Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs
    Wolff, Joachim
    Backofen, Rolf
    Gruening, Bjoern
    BIOINFORMATICS, 2021, 37 (22) : 4006 - 4013
  • [3] ImputeCC Enhances Integrative Hi-C-Based Metagenomic Binning Through Constrained Random-Walk-Based Imputation
    Du, Yuxuan
    Zuo, Wenxuan
    Sun, Fengzhu
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2024, 2024, 14758 : 99 - 114
  • [4] Massively multiplex single-cell Hi-C
    Ramani, Vijay
    Deng, Xinxian
    Qiu, Ruolan
    Gunderson, Kevin L.
    Steemers, Frank J.
    Disteche, Christine M.
    Noble, William S.
    Duan, Zhijun
    Shendure, Jay
    NATURE METHODS, 2017, 14 (03) : 263 - +
  • [5] Massively multiplex single-cell Hi-C
    Ramani V.
    Deng X.
    Qiu R.
    Gunderson K.L.
    Steemers F.J.
    Disteche C.M.
    Noble W.S.
    Duan Z.
    Shendure J.
    Nature Methods, 2017, 14 (3) : 263 - 266
  • [6] A review and performance evaluation of clustering frameworks for single-cell Hi-C data
    Zhen, Caiwei
    Wang, Yuxian
    Geng, Jiaquan
    Han, Lu
    Li, Jingyi
    Peng, Jinghao
    Wang, Tao
    Hao, Jianye
    Shang, Xuequn
    Wei, Zhongyu
    Zhu, Peican
    Peng, Jiajie
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [7] Single-cell technologies meet Hi-C
    Hughes, Jim R.
    Davies, James O. J.
    NATURE GENETICS, 2024, : 1542 - 1543
  • [8] scHiGex: predicting single-cell gene expression based on single-cell Hi-C data
    Shrestha, Bishal
    Siciliano, Andrew Jordan
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    NAR GENOMICS AND BIOINFORMATICS, 2025, 7 (01)
  • [9] Unsupervised embedding of single-cell Hi-C data
    Liu, Jie
    Lin, Dejun
    Yardimci, Galip Gurkan
    Noble, William Stafford
    BIOINFORMATICS, 2018, 34 (13) : 96 - 104
  • [10] scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)