Relationship between the edge-Wiener index and the Gutman index of a graph

被引:29
|
作者
Knor, Martin [1 ]
Potocnik, Primoz [2 ,3 ]
Skrekovski, Riste [2 ,4 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[3] Univ Primorska, IAM, Koper 6000, Slovenia
[4] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
Wiener index; Edge-Wiener index; Gutman index; Topological index; Molecular descriptor; Line graph; LINE GRAPHS; DISTANCE;
D O I
10.1016/j.dam.2013.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index W(G) of a connected graph G is defined to be the sum Sigma(u,v) d(u, v) of the distances between the pairs of vertices in G. Similarly, the edge-Wiener index We(G) of G is defined to be the sum Sigma(e,f) d(e, f) of the distances between the pairs of edges in G, or equivalently, the Wiener index of the line graph L(G). Finally, the Gutman index Gut(G) is defined to be the sum Sigma(u,v) deg(u) deg(v)d(u, v), where deg(u) denotes the degree of a vertex u in G. In this paper we prove an inequality involving the edge-Wiener index and the Gutman index of a connected graph. In particular, we prove that W-e(G) >= 1/4Gut(G) - 1/4 vertical bar E(G)vertical bar + 3/4 kappa(3)(G) + 3 kappa(4)(G) where kappa(m)(G) denotes the number of all m-cliques in G. Moreover, the equality holds if and only if G is a tree or a complete graph. Using this result we show that W-e(G) >= delta(2)-1/4W(G) where delta denotes the minimum degree in G. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 50 条
  • [1] GUTMAN INDEX, EDGE-WIENER INDEX AND EDGE-CONNECTIVITY
    Mazorodze, Jaya Percival
    Mukwembi, Simon
    Vetrik, Tomas
    TRANSACTIONS ON COMBINATORICS, 2020, 9 (04) : 231 - 242
  • [2] An inequality between the edge-Wiener index and the Wiener index of a graph
    Knor, Martin
    Skrekovski, Riste
    Tepeh, Aleksandra
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 714 - 721
  • [3] The edge-Wiener index of a graph
    Dankelmann, P.
    Gutman, I.
    Mukwembi, S.
    Swart, H. C.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3452 - 3457
  • [4] THE GUTMAN INDEX AND THE EDGE-WIENER INDEX OF GRAPHS WITH GIVEN VERTEX-CONNECTIVITY
    Mazorodze, Jaya Percival
    Mukwembi, Simon
    Vetrik, Tomas
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) : 867 - 876
  • [5] The edge-Wiener index and the edge-hyper-Wiener index of phenylenes
    Pletersek, Petra Zigert
    DISCRETE APPLIED MATHEMATICS, 2019, 255 : 326 - 333
  • [6] Explicit relation between the Wiener index and the edge-Wiener index of the catacondensed hexagonal systems
    Chen, Ailian
    Xiong, Xianzhu
    Lin, Fenggen
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 1100 - 1106
  • [7] Trees with the Greatest Wiener and Edge-Wiener Index
    Ghalavand, Ali
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 10 (02): : 151 - 159
  • [8] The edge-Wiener index of zigzag nanotubes
    Wang, Guangfu
    Liu, Yajing
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 377
  • [9] EDGE-WIENER INDEX OF SIERPINSKI FRACTAL NETWORKS
    Yao, Yiqi
    Du, Caimin
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (01)
  • [10] Wiener, edge-Wiener, and vertex-edge-Wiener index of Basilica graphs
    Cavaleri, Matteo
    D'Angeli, Daniele
    Donno, Alfredo
    Hammer, Stefan
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 32 - 49