Relationship between the edge-Wiener index and the Gutman index of a graph

被引:29
|
作者
Knor, Martin [1 ]
Potocnik, Primoz [2 ,3 ]
Skrekovski, Riste [2 ,4 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[3] Univ Primorska, IAM, Koper 6000, Slovenia
[4] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
Wiener index; Edge-Wiener index; Gutman index; Topological index; Molecular descriptor; Line graph; LINE GRAPHS; DISTANCE;
D O I
10.1016/j.dam.2013.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index W(G) of a connected graph G is defined to be the sum Sigma(u,v) d(u, v) of the distances between the pairs of vertices in G. Similarly, the edge-Wiener index We(G) of G is defined to be the sum Sigma(e,f) d(e, f) of the distances between the pairs of edges in G, or equivalently, the Wiener index of the line graph L(G). Finally, the Gutman index Gut(G) is defined to be the sum Sigma(u,v) deg(u) deg(v)d(u, v), where deg(u) denotes the degree of a vertex u in G. In this paper we prove an inequality involving the edge-Wiener index and the Gutman index of a connected graph. In particular, we prove that W-e(G) >= 1/4Gut(G) - 1/4 vertical bar E(G)vertical bar + 3/4 kappa(3)(G) + 3 kappa(4)(G) where kappa(m)(G) denotes the number of all m-cliques in G. Moreover, the equality holds if and only if G is a tree or a complete graph. Using this result we show that W-e(G) >= delta(2)-1/4W(G) where delta denotes the minimum degree in G. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 50 条
  • [41] Application of graph theory: Relationship of molecular connectivity index, Wiener's index and eccentric connectivity index with diuretic activity
    Sardana, S
    Madan, AK
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2001, (43) : 85 - 98
  • [42] On Reciprocal Complementary Wiener Index of a Graph
    Ramane, H. S.
    Joshi, V. B.
    Manjalapur, V. V.
    Shindhe, S. D.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 9 (03): : 201 - 212
  • [43] The Wiener Index of Some Particular Graph
    Al Hagri, G.
    Essalih, M.
    El Marraki, M.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2011, 11 (05): : 64 - 69
  • [44] The Wiener Polarity Index of Graph Products
    Ma, Jing
    Shi, Yongtang
    Yue, Jun
    ARS COMBINATORIA, 2014, 116 : 235 - 244
  • [45] The Wiener index of the kth power of a graph
    An, Xinhui
    Wu, Baoyindureng
    APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 436 - 440
  • [46] Wiener index of some graph operations
    Eliasi, Mehdi
    Raeisi, Ghaffar
    Taeri, Bijan
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (09) : 1333 - 1344
  • [47] Wiener index of a type of composite graph
    Hu, Mingjun
    ARS COMBINATORIA, 2012, 106 : 59 - 64
  • [48] WIENER INDEX AND ADDRESSING OF THE TOTAL GRAPH
    Taleshani, M. Gholamnia
    Abbasi, Ahmad
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (04) : 1453 - 1462
  • [49] STEINER WIENER INDEX OF GRAPH PRODUCTS
    Mao, Yaping
    Wang, Zhao
    Gutman, Ivan
    TRANSACTIONS ON COMBINATORICS, 2016, 5 (03) : 39 - 50
  • [50] HOW TO COMPUTE THE WIENER INDEX OF A GRAPH
    Mohar, Bojan
    Pisanski, Tomaz
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1988, 2 (03) : 267 - 277