Relationship between the edge-Wiener index and the Gutman index of a graph

被引:29
|
作者
Knor, Martin [1 ]
Potocnik, Primoz [2 ,3 ]
Skrekovski, Riste [2 ,4 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[3] Univ Primorska, IAM, Koper 6000, Slovenia
[4] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
Wiener index; Edge-Wiener index; Gutman index; Topological index; Molecular descriptor; Line graph; LINE GRAPHS; DISTANCE;
D O I
10.1016/j.dam.2013.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index W(G) of a connected graph G is defined to be the sum Sigma(u,v) d(u, v) of the distances between the pairs of vertices in G. Similarly, the edge-Wiener index We(G) of G is defined to be the sum Sigma(e,f) d(e, f) of the distances between the pairs of edges in G, or equivalently, the Wiener index of the line graph L(G). Finally, the Gutman index Gut(G) is defined to be the sum Sigma(u,v) deg(u) deg(v)d(u, v), where deg(u) denotes the degree of a vertex u in G. In this paper we prove an inequality involving the edge-Wiener index and the Gutman index of a connected graph. In particular, we prove that W-e(G) >= 1/4Gut(G) - 1/4 vertical bar E(G)vertical bar + 3/4 kappa(3)(G) + 3 kappa(4)(G) where kappa(m)(G) denotes the number of all m-cliques in G. Moreover, the equality holds if and only if G is a tree or a complete graph. Using this result we show that W-e(G) >= delta(2)-1/4W(G) where delta denotes the minimum degree in G. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 50 条
  • [31] ON THE ECCENTRIC CONNECTIVITY INDEX AND WIENER INDEX OF A GRAPH
    Dankelmann, P.
    Morgan, M. J.
    Mukwembi, S.
    Swart, H. C.
    QUAESTIONES MATHEMATICAE, 2014, 37 (01) : 39 - 47
  • [32] Wiener index, Harary index and graph properties
    Feng, Lihua
    Zhu, Xiaomin
    Liu, Weijun
    DISCRETE APPLIED MATHEMATICS, 2017, 223 : 72 - 83
  • [33] ON WIENER INDEX OF GRAPH COMPLEMENTS
    Senbagamalar, J.
    Babujee, J. Baskar
    Gutman, I.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (02) : 11 - 15
  • [34] THE STEINER WIENER INDEX OF A GRAPH
    Li, Xueliang
    Mao, Yaping
    Gutman, Ivan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (02) : 455 - 465
  • [35] THE EDGE VERSIONS OF THE WIENER INDEX
    Iranmanesh, Ali
    Gutman, Ivan
    Khormali, Omid
    Mahmiani, Anehgaldi
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (03) : 663 - 672
  • [36] Proof of a conjecture on Wiener index and eccentricity of a graph due to edge contraction
    Das, Joyentanuj
    Jana, Ritabrata
    Discrete Applied Mathematics, 2022, 307 : 19 - 21
  • [37] Proof of a conjecture on Wiener index and eccentricity of a graph due to edge contraction
    Das, Joyentanuj
    Jana, Ritabrata
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 19 - 21
  • [38] The (revised) Szeged index and the Wiener index of a nonbipartite graph
    Chen, Lily
    Li, Xueliang
    Liu, Mengmeng
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 237 - 246
  • [39] Wiener index, graph spectrum, line graph
    Godsil, CD
    Gutman, I
    ACH-MODELS IN CHEMISTRY, 1999, 136 (04): : 503 - 510
  • [40] The Vertex Gutman Index and Gutman Index of the Union of Two Cycles
    Mei, Yinzhen
    Miao, Hongli
    AXIOMS, 2024, 13 (04)