Relationship between the edge-Wiener index and the Gutman index of a graph

被引:29
|
作者
Knor, Martin [1 ]
Potocnik, Primoz [2 ,3 ]
Skrekovski, Riste [2 ,4 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[3] Univ Primorska, IAM, Koper 6000, Slovenia
[4] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
Wiener index; Edge-Wiener index; Gutman index; Topological index; Molecular descriptor; Line graph; LINE GRAPHS; DISTANCE;
D O I
10.1016/j.dam.2013.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index W(G) of a connected graph G is defined to be the sum Sigma(u,v) d(u, v) of the distances between the pairs of vertices in G. Similarly, the edge-Wiener index We(G) of G is defined to be the sum Sigma(e,f) d(e, f) of the distances between the pairs of edges in G, or equivalently, the Wiener index of the line graph L(G). Finally, the Gutman index Gut(G) is defined to be the sum Sigma(u,v) deg(u) deg(v)d(u, v), where deg(u) denotes the degree of a vertex u in G. In this paper we prove an inequality involving the edge-Wiener index and the Gutman index of a connected graph. In particular, we prove that W-e(G) >= 1/4Gut(G) - 1/4 vertical bar E(G)vertical bar + 3/4 kappa(3)(G) + 3 kappa(4)(G) where kappa(m)(G) denotes the number of all m-cliques in G. Moreover, the equality holds if and only if G is a tree or a complete graph. Using this result we show that W-e(G) >= delta(2)-1/4W(G) where delta denotes the minimum degree in G. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 50 条
  • [21] The first edge-Wiener index of TUC4C8(R) nanotube
    Mahmiani, Anehgaldi
    Khormali, Omid
    Iranmanesh, Ali
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2010, 4 (02): : 252 - 255
  • [22] The Wiener index, degree distance index and Gutman index of composite hypergraphs and sunflower hypergraphs
    Ashraf, Sakina
    Imran, Muhammad
    Bokhary, Syed Ahtsham Ul Haq
    Akhter, Shehnaz
    HELIYON, 2022, 8 (12)
  • [23] ON THE WIENER INDEX OF A GRAPH
    Ramane, Harishchandra
    Revankar, Deepak
    Ganagi, Asha
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2012, 18 (01) : 57 - 66
  • [24] ON THE WIENER INDEX OF A GRAPH
    GRAOVAC, A
    PISANSKI, T
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 8 (1-3) : 53 - 62
  • [25] On the relation between Wiener index and eccentricity of a graph
    Darabi, Hamid
    Alizadeh, Yaser
    Klavzar, Sandi
    Das, Kinkar Chandra
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (04) : 817 - 829
  • [26] On the relation between Wiener index and eccentricity of a graph
    Hamid Darabi
    Yaser Alizadeh
    Sandi Klavžar
    Kinkar Chandra Das
    Journal of Combinatorial Optimization, 2021, 41 : 817 - 829
  • [27] On the Edge Wiener Index
    Soltani, Abolghasem
    Iranmanesh, Ali
    FILOMAT, 2014, 28 (03) : 541 - 549
  • [28] On the relationship between variable Wiener index and variable Szeged index?
    Cambie, Stijn
    Haslegrave, John
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 431
  • [29] On the relationship between variable Wiener index and variable Szeged index
    Cambie, Stijn
    Haslegrave, John
    Applied Mathematics and Computation, 2022, 431
  • [30] COMPUTATION OF THE FIRST EDGE-WIENER INDEX OF TUC4C8(S) NANOTUBE
    Iranmanesh, Ali
    Kafrani, Abolghasem Soltani
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 62 (02) : 311 - 352